

 paradrop

 v0.1

 	Apps on Paradrop
	The Paradrop Instance System
	Architecture
	Known Issues
	Frequently Asked Questions
	paradrop

 paradrop

 	Docs »
	paradrop »
	paradrop.backend package »
	paradrop.backend.pdfcd package
	

 Edit on GitHub

paradrop.backend.pdfcd package¶

Submodules¶

paradrop.backend.pdfcd.apichute module¶

	
class ChuteAPI(rest)[source]¶
	The Chute API submodule.
This class handles all API calls related to actionable items that directly effect chutes.

	
POST_createChute(theSelf, request, *args, **kwargs)¶
	

	
POST_deleteChute(theSelf, request, *args, **kwargs)¶
	

	
POST_startChute(theSelf, request, *args, **kwargs)¶
	

	
POST_stopChute(theSelf, request, *args, **kwargs)¶
	

paradrop.backend.pdfcd.apiinternal module¶

	
class Base(module, **kwargs)[source]¶
	Bases: twisted.web.xmlrpc.XMLRPC

	
lookupProcedure(procedurePath)[source]¶
	

	
class ServerPerspective(name, realm)[source]¶
	Bases: pdtools.lib.riffle.RifflePerspective

	
destroy()[source]¶
	

	
initialize()[source]¶
	

	
perspective_subscribeLogs(*args, **kwargs)[source]¶
	Fetch all logs since the target time. Stream all new logs
to the server as they come in.

	
class ToolsPerspective(name, realm)[source]¶
	Bases: pdtools.lib.riffle.RifflePerspective

	
apiWrapper(target)[source]¶
	Add a final line of error and success callbacks before going onto the wire

	
api_provision(*args, **kwargs)[source]¶
	Provision this router with an id and a set of keys.

This is a temporary call until the provisioning process is finalized.

	
castFailure(failure)[source]¶
	Converts an exception (or general failure) into an xmlrpc fault for transmission.

	
castSuccess(res)[source]¶
	

	
checkStartRiffle()[source]¶
	Temporary function. Do not start serving or connecting over riffle
until we have our keys (which occurs during currently optional provisioning)

	
pollServer(host)[source]¶
	Poll the server for a connection.

paradrop.backend.pdfcd.apiutils module¶

backend.pdfcd.apiutils.
Contains helper functions specific to the backend API code.

	
addressInNetwork(ipaddr, netTuple)[source]¶
	This function allows you to check if on IP belongs to a Network.
Arguments:

unpacked IP address (use unpackIPAddr())
tuple of unpacked (addr, netmask) (use unpackIPAddrWithSlash())

	Returns:
	True if in network
False otherwise

	
calcDottedNetmask(mask)[source]¶
	Returns quad dot format of IP address.

	
getIP(req)[source]¶
	Returns the str IP addr from the request.
NOTE: This is required because when we use nginx servers
it is used as a proxy, so the REAL IP addr is stored in a HTTP header
called ‘X-Real-IP’, so we need to check for this first, otherwise the
request.getClientIP() is always going to return ‘localhost’ to us.

	
unpackIPAddr(ip)[source]¶
	Unpacks the ‘IP’ str.
Returns a binary form of the ipaddr such that (ipaddr & netmask) will work.

	
unpackIPAddrWithSlash(net)[source]¶
	Unpacks the ‘IP/bitmask’ str.
Returns a tuple of binary forms of both the ipaddr and netmask such that (ipaddr & netmask) will work.

paradrop.backend.pdfcd.server module¶

pdfcd.server.
Contains the classes required to establish a RESTful API server using Twisted.

	
class ParadropAPIServer(*args, **kwargs)[source]¶
	Bases: paradrop.lib.api.pdrest.APIResource

The main API server module.

This sets up all of the submodules which should contain different types of RESTful API calls.

	
GET_test(request)[source]¶
	A Simple test method to ping if the API server is working properly.

	
complete(update)[source]¶
	Kicks off the properly threaded call to complete the API call that was passed
to PDConfigurer. Since the PDConfigurer module has its own thread that runs outside
of the main event loop, we have to call back into the event system properly in order
to keep any issues of concurrency at bay.

	
default(request)[source]¶
	A dummy catch for all API calls that are not caught by any other module.

	
failprocess(ip, request, logFailure, errorStmt, logUsage, errType)[source]¶
	If logFailure is not None, Update the failureDict when the request does something wrong
If logUsage is not None, log the usage track info.

	Arguments:
	
ip : IP of client
request : the request we received
logFailure : If none, we do not log this failure to failure dict. Otherwise it is a tuple of

key : the key to use in the failureDict
failureDict : the dict record the failure attempt history

	errorStmt : A string to return to the user, looks like ‘Malformed Body: %s’
	so that we can add things like “Number of attempts remaining: 2” to the response

logUsage : A tuple of (tictoc and devid) used for usage tracker
errorResponse: The error code to set response code

	Returns:
	String to respond to the client

	
postprocess(request, key, failureDict, logUsage)[source]¶
	If the client is successful in their request, we should:
* reset their failure attempts if failureDict is not none.
* set success response code
* If usage is not none, add usage track info of the api call

	
preprocess(request, checkThresh, tictoc)[source]¶
	Check if failure attempts for the user name has met the threshold.
Arguments:

request :
checkThresh : If None, no checking. Tuple of arguments for checking thresholds

ip: IP of client in string format
token: sessionToken if found, or None
username: username if signin, or None
failureDict: the dict for failure history

ticktoc: If none, do not track the usage. The start time of the API call

	Return:
	str: if threshold is met
None: if ok

	
initializeSystem()[source]¶
	Perform some initialization steps such as writing important configuration.

	
setup(args=None)[source]¶
	This is the main setup function to establish the TCP listening logic for
the API server. This code also takes into account development or unit test mode.

Module contents¶

 Next

 Previous

 © Copyright 2015, Paradrop Labs.

 Revision 7517537e.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: v0.1

 	Versions
	latest
	stable
	v0.2
	v0.1
	master
	dev

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

