

 paradrop

 v0.1

 	Apps on Paradrop
	The Paradrop Instance System
	Architecture
	Known Issues
	Frequently Asked Questions
	paradrop

 paradrop

 	Docs »
	Module code »
	paradrop.backend.pdfcd.server
	

 Edit on GitHub

 Source code for paradrop.backend.pdfcd.server

##
Copyright 2013-2015 All Rights Reserved
Authors: The Paradrop Team
###

'''
pdfcd.server.
Contains the classes required to establish a RESTful API server using Twisted.
'''

from twisted.web.server import Site
from twisted.internet import reactor

from pdtools.lib.output import out
from pdtools.lib import store, riffle, names

from pdtools.lib.pdutils import timeflt, str2json, json2str
from paradrop.lib.api import pdapi
from paradrop.lib.api import pdrest
from paradrop.lib import settings
from paradrop.lib.utils import dockerapi

from paradrop.backend import fc

Import local refs to pdfcd utilities
from . import apiutils
from . import apichute

temp
from paradrop.backend.pdfcd.apiinternal import Base
from paradrop.backend.pdfcd import apiinternal

[docs]class ParadropAPIServer(pdrest.APIResource):

 """
 The main API server module.

 This sets up all of the submodules which should contain different types of RESTful API calls.
 """

 def __init__(self, lclreactor):
 pdrest.APIResource.__init__(self)
 self.reactor = lclreactor

 # Establish the configurer which is the launch point for all chute related endeavors
 self.configurer = fc.configurer.PDConfigurer(None, lclreactor)

 # Allow each module to register their API calls
 apichute.ChuteAPI(self)

 def _complete(self, update):
 """
 THREADED:call from event thread
 All API operations require some work to happen outside of the API module, therefore
 when a request comes in we tell it to wait a minute (a NOT_DONE_YET return) and then
 later on we use the reference we have to the request from @update to write the response
 back to the user and close the connection.

 :param name: update
 :param type: UpdateObject
 """
 # Wrap in a try-catch, if the connection is closed by the client before
 # we have a chance to write out our results then this below will result
 # in an exception being raised
 try:
 update.pkg.request.write(json2str(update.result))
 update.pkg.request.finish()

 # TODO don't catch all exceptions here
 except Exception as e:
 pass

[docs] def complete(self, update):
 """
 Kicks off the properly threaded call to complete the API call that was passed
 to PDConfigurer. Since the PDConfigurer module has its own thread that runs outside
 of the main event loop, we have to call back into the event system properly in order
 to keep any issues of concurrency at bay.
 """
 self.reactor.callFromThread(self._complete, update)

[docs] def preprocess(self, request, checkThresh, tictoc):
 """
 Check if failure attempts for the user name has met the threshold.
 Arguments:
 request :
 checkThresh : If None, no checking. Tuple of arguments for checking thresholds
 ip: IP of client in string format
 token: sessionToken if found, or None
 username: username if signin, or None
 failureDict: the dict for failure history
 ticktoc: If none, do not track the usage. The start time of the API call
 Return:
 str: if threshold is met
 None: if ok
 """

 if(checkThresh):
 ip, token, key, failureDict = checkThresh

 # Check if IP is in whitelist
 ipaddr = apiutils.unpackIPAddr(ip)
 for ipnet in self.WHITELIST_IP:
 if(apiutils.addressInNetwork(ipaddr, ipnet)):
 out.verbose('Request from white list: %s\n' % (ip))
 return None

 if(key in failureDict):
 if(failureDict[key].attempts >= settings.DBAPI_FAILURE_THRESH):
 out.err('Threshold met: %s %s!\n' % (ip, key))
 if(tictoc is None):
 usage = None
 else:
 usage = (tictoc, None)
 self.failprocess(ip, request, (ip, self.clientFailures), None, usage, pdapi.getResponse(pdapi.ERR_THRESHOLD))
 duration = 0 # self.perf.toc(tictoc)
 # Log the info of this call
 # TODO self.usageTracker.addTrackInfo(ip, 'Null', request.path, self.usageTracker.FAIL_THRESH, duration, request.content.getvalue())

 return "Threshold Met!"
 # Otherwise everything is ok
 return None

[docs] def postprocess(self, request, key, failureDict, logUsage):
 """
 If the client is successful in their request, we should:
 * reset their failure attempts if failureDict is not none.
 * set success response code
 * If usage is not none, add usage track info of the api call
 """
 request.setResponseCode(*pdapi.getResponse(pdapi.OK))
 if(logUsage):
 tictoc, ip, devid = logUsage
 duration = 0 # self.perf.toc(tictoc)
 # when devid is none, we log "Null" into the database
 if(devid is None):
 devid = "Null"
 # Log the info of this call
 # TODO self.usageTracker.addTrackInfo(ip, devid, request.path, self.usageTracker.SUCCESS, duration, request.content.getvalue())
 if(failureDict is not None):
 if(key in failureDict):
 out.info('Clearing %s from failure list\n' % (key))
 del failureDict[key]

[docs] def failprocess(self, ip, request, logFailure, errorStmt, logUsage, errType):
 """
 If logFailure is not None, Update the failureDict when the request does something wrong
 If logUsage is not None, log the usage track info.

 Arguments:
 ip : IP of client
 request : the request we received
 logFailure : If none, we do not log this failure to failure dict. Otherwise it is a tuple of
 key : the key to use in the failureDict
 failureDict : the dict record the failure attempt history
 errorStmt : A string to return to the user, looks like 'Malformed Body: %s'
 so that we can add things like "Number of attempts remaining: 2" to the response
 logUsage : A tuple of (tictoc and devid) used for usage tracker
 errorResponse: The error code to set response code

 Returns:
 String to respond to the client
 """
 time = timeflt()

 # Set the response error code
 if(errType == pdapi.ERR_BADPARAM):
 request.setResponseCode(*pdapi.getResponse(errType, ""))
 else:
 request.setResponseCode(*pdapi.getResponse(errType))

 headers = request.received_headers
 if(logUsage is not None):
 tictoc, devid = logUsage

 if(devid is None):
 devid = "Null"
 duration = 0 # self.perf.toc(tictoc)
 # Log the info of this call
 # TODO self.usageTracker.addTrackInfo(ip, devid , request.path, self.usageTracker.FAIL_AUTH, duration, request.content.getvalue())

 if(logFailure is not None):
 key, failureDict = logFailure
 # update the accessInfo
 if(key in failureDict):
 failureDict[key].update(ip, headers, time)
 else:
 failureDict[key] = AccessInfo(ip, headers, time)

 attempts = failureDict[key].attempts
 out.warn('Failure access recorded: %s Attempts: %d\n' % (key, attempts))

 remaining = str(max(0, settings.DBAPI_FAILURE_THRESH - attempts))
 if(errorStmt):
 return errorStmt % ("%s attempts remaining" % remaining)
 if(errorStmt):
 return errorStmt % ("Null")

 @pdrest.GET('^/v1/test')
[docs] def GET_test(self, request):
 """
 A Simple test method to ping if the API server is working properly.
 """
 request.setHeader('Access-Control-Allow-Origin', settings.PDFCD_HEADER_VALUE)
 ip = apiutils.getIP(request)
 out.info('Test called (%s)\n' % (ip))
 request.setResponseCode(*pdapi.getResponse(pdapi.OK))
 return "SUCCESS\n"

 @pdrest.ALL('^/')
[docs] def default(self, request):
 """
 A dummy catch for all API calls that are not caught by any other module.
 """

 ip = apiutils.getIP(request)
 uri = request.uri
 method = request.method
 # Get data about who done it
 out.err("Default caught API call (%s => %s:%s)\n" % (ip, method, uri))

 # Someone might be trying something bad, track their IP
 res = self.preprocess(request, (ip, None, ip, self.defaultFailures), tictoc)
 if(res):
 return res

 self.failprocess(ip, request, (ip, self.defaultFailures), None, (tictoc, None), pdapi.ERR_BADMETHOD)
 return ""

###
Initialization
###

[docs]def initializeSystem():
 """
 Perform some initialization steps such as writing important configuration.
 """
 dockerapi.writeDockerConfig()

###
Main function
###

[docs]def setup(args=None):
 """
 This is the main setup function to establish the TCP listening logic for
 the API server. This code also takes into account development or unit test mode.
 """

 # Setup API server
 api = ParadropAPIServer(reactor)
 api.putChild('internal', Base(apiinternal, allowNone=True))
 site = Site(api, timeout=None)

 # Development mode
 if(args and args.development):
 thePort = settings.PDFCD_PORT + 10000
 out.info('Using DEVELOPMENT variables')
 # Disable sending the error traceback to the client
 site.displayTracebacks = True
 elif(args and args.unittest):
 thePort = settings.DBAPI_PORT + 20000
 out.info('Running under unittest mode')
 site.displayTracebacks = True
 else:
 thePort = settings.PDFCD_PORT
 site.displayTracebacks = False
 initializeSystem()

 # Setup the port we listen on
 reactor.listenTCP(thePort, site)

 # Never return from here
 reactor.run()

 © Copyright 2015, Paradrop Labs.

 Revision 7517537e.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: v0.1

 	Versions
	latest
	stable
	v0.2
	v0.1
	master
	dev

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

