

    
      Navigation

      
        	
          index

        	
          next |

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            
  



Paradrop

Paradrop is a software platform that enables apps to run on Wi-Fi routers.
We call these apps “chutes” like a parachute.
The name Paradrop comes from the fact that we are enabling the ability to “drop” supplies and resources (“apps”) into a difficult and not well-travelled environment - the home.

Paradrop runs on top of Snappy Ubuntu [https://developer.ubuntu.com/en/snappy/], a trimmed-down and secured operating system that can run on ARM adn x86.
We also enable our apps through containerization by leveraging Docker [https://www.docker.com/].




The Paradrop workflow

There are two components to the Paradrop platform:


	The build tools [https://pypi.python.org/pypi/pdtools] - our CLI that enables registration, login, and control.  With version 0.2 and up, Paradrop routers can be managed through our cloud management [https://paradrop.org] service instead of the CLI.

	The instance tools [https://github.com/ParadropLabs/Paradrop] - our configuration daemons and tools to launch apps on hardware.



[image: _images/dev_tools_map.png]
As you can see from the image above, we will refer to Build Tools when we talk about the CLI program running on your development computer that controls and communicates with the rest of the Paradrop platform.
Treat this tool as your window into the rest of the Paradrop world.
Our Instance Tools leverage programs like Docker to allow Paradrop apps to run on router hardware.
This “hardware” could be a Raspberry Pi, or even a virtual machine on your computer that acts as a router (which is why we call it an Instance sometimes).
Using Paradrop, you can actually plug in a USB Wi-Fi adapter and turn a virtual machine on your computer into a real router with our platform!




Getting Started

Please visit the Getting Started page for a quick introduction to Paradrop.




Where to go from here?

We have advanced app examples found under Apps on Paradrop.
If you are interested in working on the instance side of paradrop (our github code) than check out: The Paradrop Instance System.




What if I don’t have Ubuntu?

With version 0.2 and up, all of Paradrop’s capabilities can be managed through our web-based service at paradrop.org [https://paradrop.org].





          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            
  
Apps on Paradrop

This section of the documentation is devoted to describing the apps that run on Paradrop.

If this is your first time seeing Paradrop, please start with the Getting Started page.

Contents:



	Getting Started
	Environment setup

	Activating your Router

	Installing Chutes





	Chute Development
	Structure

	Dockerfile

	Persistent Data

	System Information





	Developing Light Chutes
	Structure

	paradrop.yaml

	Persistent Data





	Chute Deployment

	Installing on the Intel NUC
	Hardware and software requirements

	Preparing for installation

	Boot from the Live USB flash drive

	Flash ParaDrop

	First boot

	Activate the Router













          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	Apps on Paradrop 
 
      

    


    
      
          
            
  
Getting Started

This will quickly take you through the process of bringing up a Hello World chute in a virtual machine on your computer.

NOTE: These instructions assume you are running Ubuntu.  The steps to launch a virtual machine may be different for other environments.


Environment setup

These steps wil download our router image and launch it a virtual machine.


	Install required packages:

sudo apt-get install qemu-kvm







	Download the latest image (paradrop_router.img.gz) from our releases [https://paradrop.org/release/2017-01-09/].



	Extract the image:

gunzip paradrop_router.img.gz







	Launch the VM:

sudo kvm -m 1024 \
-netdev user,id=net0,hostfwd=tcp::8000-:8000,hostfwd=tcp::80-:80 \
-device virtio-net-pci,netdev=net0 -drive file=paradrop_router.img,format=raw









Please note: there is no username/password to log into the system.  Please follow the steps in the next section to access your router through paradrop.org.




Activating your Router

Follow these steps the first time you start a new physical or virtual Paradrop router.  Activation associates the router with your account on paradrop.org [https://paradrop.org] so that you can manage the router and install chutes from the chute store.


	Make an account on paradrop.org [https://paradrop.org] if you do not have one.

	From the Routers tab, click Create Router.  Give your router a unique name and an optional description to help you remember it and click Submit.

	On the router page, find the “Router ID” and “Password” fields.  You will need to copy this information to the router so that it can connect.

	Open the router portal at http://localhost.  Click the “Activate the router witha ParaDrop Router ID” button and enter the information from the paradrop.org router page.  If the activation was successful, you should see checkmarks appear on the “WAMP Router” and “ParaDrop Server” lines.  You may need to refresh the page to see the update.






Installing Chutes


	Make an account on paradrop.org [https://paradrop.org] and make sure you have an activated, online router.

	Go to the Chute Store tab on paradrop.org.  There you will find some public chutes such as the hello-world chute.  You can also create your own chutes here.

	Click on the hello-world chute,  click Install, click your router’s name to select it, and finally, click Install.

	That will take you to the router page again where you can click the update item to monitor its progress.  When the installation is complete, an entry will appear under the Chutes list.

	The hello-world chute starts a webserver, which is accessible at http://localhost:8000.  Once the installation is complete, test it in a web browser.









          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	Apps on Paradrop 
 
      

    


    
      
          
            
  
Chute Development

Minimally, a chute has a Dockerfile, which contains instructions for
building and preparing the application to run on Paradrop.  A chute
will usually also require scripts, binaries, configuration files, and
other assets.  For integration with the Paradrop toolset, we highly
recommend developing a chute as a GitHub [https://github.com] project,
but other organization methods are possible.

We will examine the hello-world [https://github.com/ParadropLabs/hello-world] chute as an example of
a complete Paradrop application.


Structure

Our hello-world chute is a git project with the following files:

chute/index.html
Dockerfile
README.md





The top-level contains a README and a special file called “Dockerfile”,
which will be discussed below.  As a convention, we place files that
will be used by the running application in a subdirectory called “chute”.
This is not necessary but helps keep the project organized.  Valid
alternatives include “src” or “app”.




Dockerfile

The Dockerfile contains instructions for building and preparing an
application to run on Paradrop.  Here is a minimal Dockerfile for our
hello-world chute:

FROM nginx
ADD chute/index.html /usr/share/nginx/html/index.html





FROM nginx

The FROM instruction specifies a base image for the chute.  This could
be a Linux distribution such as “ubuntu:14.04” or an standalone
application such as “nginx”.  The image name must match an image in
the Docker public registry.  We recommend choosing from the official
repositories [https://hub.docker.com/explore/].  Here we use “nginx”
for a light-weight web server.

ADD chute/index.html index.html

The ADD instruction copies a file or directory from the source repository
to the chute filesystem.  This is useful for installing scripts or
other files required by the chute and are part of the source repository.
The <source> path should be inside the respository, and the <destination>
path should be an absolute path or a path inside the chute’s working
directory.  Here we install the index.html file from our source repository
to the search directory used by nginx.

Other useful commands for building chutes are RUN and CMD.  For a
complete reference, please visit the official Dockerfile reference [https://docs.docker.com/engine/reference/builder/].

Here is an alternative implementation of the hello-world Dockerfile that
demonstrates some of the other useful instructions.

FROM ubuntu:14.04
RUN apt-get update && apt-get install -y nginx
ADD chute/index.html /usr/share/nginx/html/index.html
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]





Here we use a RUN instruction to install nginx and a CMD instruction
to set nginx as the command to run inside the chute container.  Using
“ubuntu:14.04” as the base image gives access to any packages that can
be installed through apt-get.




Persistent Data

Each running chute has a persistent data storage that is not visible
to other chutes.  By default the persistent data directory is named
“/data” inside the chute’s filesystem.  Files stored in this directory
will remain when upgrading or downgrading the chute and are only removed
when uninstalling the chute.




System Information

The Paradrop instance tools share system information with chutes through
a read-only directory named “/paradrop”.  Chutes that are configured
with a WiFi access point will find a file in this directory that lists
wireless clients.  In future versions there will also be information
about Bluetooth and other wireless devices.


dnsmasq-wifi.leases

This file lists client devices that have connected to the WiFi AP
and received a DHCP lease.  This is a plain text file with one line
for each device containing the following space-separated fields.


	DHCP lease expiration time (seconds since Unix epoch).

	MAC address.

	IP address.

	Host name, if known.

	Client ID, if known; the format of this field varies between devices.



The following example shows two devices connected to the chute’s WiFi
network.

1480650200 00:11:22:33:44:55 192.168.128.130 android-ffeeddccbbaa9988 *
1480640500 00:22:44:66:88:aa 192.168.128.170 someones-iPod 01:00:22:44:66:88:aa













          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	Apps on Paradrop 
 
      

    


    
      
          
            
  
Developing Light Chutes

Light chutes build and install the same way as normal chutes and can do
many of the same things.  However, they make use of prebuilt base images
that are optimized for different programming languages.

Light chutes offer these advantages over normal, heavy chutes.


	Safety: Light chutes have stronger confinement properties, so
you can feel safer installing a light chute written by a third party
developer.

	Fast installation: Light chutes use a common base image that
may already be cached on the router, so installation can be very
fast.

	Simplicity: You do not need to learn how to write
and debug a Dockerfile to develop a chute.  Instead, you can
use the package management tools you may already be using
(e.g. package.json for npm and requirements.txt for pip).

	Portability: With ARM suppport coming soon for ParaDrop,
your light chutes will most likely run on ARM with extra work on your
part.  This is not the case for normal chutes that use a custom
Dockerfile.



We will look at the node-hello-world [https://github.com/ParadropLabs/node-hello-world] chute as an example of a
light chute for ParaDrop.


Structure

Our hello-world chute is a git project with the following files:

README.md
index.js
package.json
paradrop.yaml





The project contains the typical files for a node.js project as well
as a special file called “paradrop.yaml”.




paradrop.yaml

The paradrop.yaml file contains information that ParaDrop needs
in order to run the chute.  Here are the contents for the hello-world
example:

version: 1
type: light
use: node
command: node index.js





All of these fields are required and very simple to use.

version: 1

This specifies the version of the paradrop.yaml schema in order to allow
future changes without breaking existing chutes.  You should specify
version 1.

type: light

This indicates that we are building a light chute.

use: node

This indicates that we are using the node base image for this
chute.  You should choose the base image appropriate for your
project.  Supported images are: node and python2.

command: node index.js

This line indicates the command for starting your application.  You can
either specified it this way, as a string with spaces between the
parameters, or you can use a list of strings.  The latter format would
be particularly useful if your parameters include spaces.  Here is an
example:

command:
  - node
  - index.js








Persistent Data

Each running chute has a persistent data storage that is not visible
to other chutes.  By default the persistent data directory is named
“/data” inside the chute’s filesystem.  Files stored in this directory
will remain when upgrading or downgrading the chute and are only removed
when uninstalling the chute.







          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	Apps on Paradrop 
 
      

    


    
      
          
            
  
Chute Deployment

Starting with version 0.2, developers should use our website,
paradrop.org [https://paradrop.org] for creating chutes and installing
them on Paradrop routers.  The command line tools from Paradrop 0.1 are
not currently supported.

As our website is under development, please refer to the instructions
on the website or contact us for help with making and installing a chute.





          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	Apps on Paradrop 
 
      

    


    
      
          
            
  
Installing on the Intel NUC

These instructions will help you install the ParaDrop daemon on the Intel NUC platform.  At the end of this process, you will have a system ready for installing chutes.

We have specifically tested this process on the Skull Canyon (NUC6i7KYK) platform, which we recommend for high performance edge-computing needs.


Hardware and software requirements


	
	Intel NUC Skull Canyon NUC6i7KYK

	
	The Intel NUC devices generally do not come with memory or storage pre-installed.

	Memory: we recommend at least one 8 GB DDR4 SODIMM.

	Storage: we have generally found one 16 GB SD card to be sufficient for our storage needs, but we recommend using one MX300 M.2 SSD card for the higher read and write speeds.

	We recommend updating the BIOS on the NUC.  Follow the instructions on the Intel support site [http://www.intel.com/content/www/us/en/support/boards-and-kits/000005850.html].









	2 USB 2.0 or 3.0 flash drives (each 4 GB minimum)



	A monitor with an HDMI interface



	A network connection with Internet access



	An Ubuntu Desktop 16.04.1 LTS image [http://releases.ubuntu.com/16.04.1/ubuntu-16.04.1-desktop-amd64.iso].



	A ParaDrop disk image [https://paradrop.org/release/2017-01-09/paradrop_router.img.gz].








Preparing for installation


	Download the Ubuntu Desktop image and prepare a bootable USB flash drive.

	Download the ParaDrop disk image and copy the file to the second flash drive.






Boot from the Live USB flash drive


	Insert the Live USB Ubuntu Desktop flash drive in the NUC.

	Start the NUC and push F10 to enter the boot menu.

	Select the USB flash drive as a boot option.

	Select “Try Ubuntu without installing”.






Flash ParaDrop


	Once the system is ready, insert the second USB flash drive which contains the ParaDrop disk image.



	Open a terminal and run the following command, where <disk label> is the name of the second USB flash drive.  You may wish to double-check that /dev/sda is the desired destination before running dd.

zcat /media/ubuntu/<disk label>/paradrop_router.img.gz | sudo dd of=/dev/sda bs=32M status=progress; sync







	Reboot the system and remove all USB flash drives when prompted to do so.








First boot


	At the Grub menu, press ‘e’ to edit the boot options.



	Find the line that begins with “linux” and append the option “nomodeset”.  It should look like “linux (loop)/kernel.img $cmdline nomodeset”.  Adding this option will temporarily fix a graphics issue that is known to occur with the Intel NUC.



	Press F10 to continue booting.



	Press Enter when prompted, and follow the instructions on the screen to configure Ubuntu Core.  If you have an Ubuntu One account.  By connecting your Ubuntu One account, you will be able to login via SSH with the key(s) attached to your account.  Otherwise, if you do not have an Ubuntu One account or do not wish to use it, you may enter “info@paradrop.io” as your email address.  You will still be able to manage your router and install chutes through paradrop.org either way.



	Take note of the IP address displayed on the screen.  You will need this address for the next step, activating the router.  For example, the message below indicates that the router has IP address 10.42.0.162.

Congratulations! This device is now registered to info@paradrop.io.

The next step is to log into the device via ssh:

ssh paradrop@10.42.0.162
...












Activate the Router

Follow these steps the first time you start a new physical or virtual ParaDrop router.  Activation associates the router with your account on paradrop.org [https://paradrop.org] so that you can manage the router and install chutes from the chute store.


	Make an account on paradrop.org [https://paradrop.org] if you do not have one.

	From the Routers tab, click Create Router.  Give your router a unique name and an optional description to help you remember it and click Submit.

	On the router page, find the “Router ID” and “Password” fields.  You will need to copy this information to the router so that it can connect.

	Open the router portal at http://<router_address>.  Click the “Activate the router with a ParaDrop Router ID” button and enter the information from the paradrop.org router page.  If the activation was successful, you should see checkmarks appear on the “WAMP Router” and “ParaDrop Server” lines.  You may need to refresh the page to see the update.









          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            
  
The Paradrop Instance System

This section focuses on the Instance Tools. This is the set of daemons and tools required to allow the Paradrop platform to function on virtual machines and real hardware.
Use the information below to learn about Snappy Ubuntu and how we leverage it to create next generation smart routers.

Contents:



	Build System
	Installing and running Ubuntu Snappy

	Building paradrop

	Installing paradrop





	Snappy Confinement
	Getting started with Profile Generation





	Documentation and tests
	Documentation

	Testing













          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	The Paradrop Instance System 
 
      

    


    
      
          
            
  
Build System

Paradrop includes a set of build tools to make development as easy
as possible.

Currently this system takes the form of a bash script that automates
installation and execution, but in time this may evolve into a published
python package. This page outlines the steps required to manually build
the components required to develop with paradrop.

Components in the build process:


	Installing and running Ubuntu Snappy

	Building paradrop

	Installing paradrop

	`Creating chutes`_



We recommend using Ubuntu 14.04 as the build environment for this version
of Paradrop.  Ubuntu 16.04 will not work because the snappy development
tools have changed.  The next release of Paradrop will use the new tools.

You will only need to follow these instructions if you will be making
changes to the Paradrop instance tools.  Otherwise, you can
use our pre-built Paradrop disk image.  Please visit the
Getting Started page.


Installing and running Ubuntu Snappy

Snappy [https://developer.ubuntu.com/en/snappy/] is an Ubuntu release
focusing on low-overhead for a large set of platforms. These instructions
are for getting a Snappy instance up and running using ‘kvm’.

Download and unzip a snappy image:

wget http://releases.ubuntu.com/15.04/ubuntu-15.04-snappy-amd64-generic.img.xz
unxz ubuntu-15.04-snappy-amd64-generic.img.xz





Launch the snappy image using kvm:

kvm -m 512 -redir :8090::80 -redir :8022::22 ubuntu-15.04-snappy-amd64-generic.img





Connect to local instance using ssh:

ssh -p 8022 ubuntu@localhost








Building paradrop

Snappy is a closed system (by design!). Arbitrary program installation
is not allowed, so to allow paradrop access to the wide world of pypi
the build system relies on two tools.


	virtualenv is a tool that creates encapsulated environments in
which python packages can be installed.

	pex can compress python packages into a zip file that can be
executed by any python interpreter.

	snappy is a tool for building snap packages.  Note: Ubuntu 16.04
uses snapcraft instead, which produces incompatible packages.



First, set DEV_MACHINE_IP=paradrop.org in pdbuild.conf.  The build
script will refuse to run if this variable is not set.

Install the necessary development tools:

./pdbuild.sh setup





Build the Paradrop snap package:

./pdbuild.sh build








Installing paradrop

Install dependencies on the virtual machine:

./pdbuild.sh install_deps





Install the newly created Paradrop snap package:

./pdbuild.sh install_dev











          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	The Paradrop Instance System 
 
      

    


    
      
          
            
  
Snappy Confinement

Snappy confines running applications in two ways: directory isolation
and mandatory access control (MAC). Directory isolation means the
application cannot leave its installed directory. MAC means the
application cannot execute any system commands or access any files it
does not have explicit, predetermined permissions to.

MAC is the more serious hurdle for paradrop development. Snaps declare permissions through an AppArmor profile [https://wiki.ubuntu.com/AppArmor].


Getting started with Profile Generation

Install tools and profiles:

sudo apt-get install apparmor-profiles apparmor-utils





List active profiles:

sudo apparmor_status





Profiles in complain mode log behavior, while those in enforce mode actively restrict it.

The following steps assume paradrop is installed on the system and not on a virtualenv.

Create a new, blank profile:

cd /etc/apparmor.d/
sudo aa-autodep paradrop





Use aa-complain to put the profile in complain mode:

sudo aa-complain paradrop





Excercise the application! AppArmor will surreptitiously watch the program in the background and log all behavior. Once finished, use the following command to go through the resulting requests, approve or deny them, and autogenerate a profile:

sudo aa-logprof











          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 

          	The Paradrop Instance System 
 
      

    


    
      
          
            
  
Documentation and tests

Documentation is handled by sphinx [http://sphinx-doc.org/] and readthedocs.

Testing is a joint effort between nosetests [https://nose.readthedocs.org/en/latest/], travis-ci, and coveralls.


Documentation

Information about docs creation, management, and display.

Sphinx reads files in reStructuredText [http://sphinx-doc.org/rest.html] and builds a set of HTML pages. Every time a new commit is pushed to github, readthedocs automatically updates documentation.

Additionally, sphinx knows all about python! The directives automodule, autoclass, autofunction and more instruct sphinx to inspect the code located in src/ and build documentation from the docstrings within.

For example, the directive .. automodule:: paradrop.backend will build all the documentation for the given package. See google for more instructions.

All docstring documentation is rebuilt on every commit (unless there’s a bug in the code.) Sphinx does not, however, know about structural changes in code! To alert sphinx of these changes, use the autodoc feature:

sphinx-apidoc -f -o docs/api paradrop/paradrop/





This scans packages in the src/paradrop directory and creates .rst files in docs/api. The root file index.rst links to modules.rst, connecting the newly generated api code with the main documentation.

To create the documentation locally, run:

cd docs
make html
python -m SimpleHTTPServer 9999





Open your web browser of choice and point it to http://localhost:9999/_build/html/index.html.




Testing

As mentioned above, all testing is automatically run by travis-ci, a continuous integration service.

To manually run tests, install nosetest:

pip install nose





Install the required packages:

pip install -r docs/requirements.txt





Run all tests:

nosetests





Well thats easy. How does nose detect tests? All tests live in the tests/ directory. Nose adheres to a simple principle: anything marked with test in its name is most likely a test. When writing tests, make sure all functions begin with test.

Coverage analysis detects how much of the code is used by a test suite. If the result of the coverage is less than 100%, someone slacked. Install coveralls:

pip install coveralls





Run tests with coverage analysis:

nosetests --with-coverage --cover-package=paradrop











          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            
  
Architecture

This section details some of the non-obvious architectural features of paradrop.

This is a work in progress. Check back later!





          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            
  
Known Issues

Please check here for issues during setup.


Issues using pdbuild.sh

These issues are related to the Instance Tools found on github.


Issue 1: pdbuild.sh install fails

Docker snap is missing inside of virtual router, run pdbuild.sh install_deps:

issues while running ssh command: Installing /tmp/paradrop_0.1.0_all.snap
2015/08/11 21:22:57 Signature check failed, but installing anyway as requested
/tmp/paradrop_0.1.0_all.snap failed to install: missing frameworks: docker








Issue 2: pdbuild.sh install fails

This is a known issue for the Paradrop team, if you get this please email us at developers@paradrop.io:

Installing paradrop_0.1.0_all.snap from local environment

issues while running ssh command: Installing /tmp/paradrop_0.1.0_all.snap
2015/08/11 21:29:48 Signature check failed, but installing anyway as requested
/tmp/paradrop_0.1.0_all.snap failed to install: [start paradrop_pdconfd_0.1.0.service]
failed with exit status 1: Job for paradrop_pdconfd_0.1.0.service failed.
See "systemctl status paradrop_pdconfd_0.1.0.service" and "journalctl -xe" for details.








Issue 3: pdbuild.sh up fails

This is very common and will happen if you delete your VM and setup a
fresh one, which will have a different key.  The solution is simple and
is stated in the error message.  Follow the instructions to remove the
key from your known_hosts file.

Failed to setup keys: failed to setup keys: issues while running ssh command:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
e6:ec:b1:93:7d:91:84:50:19:36:14:8e:ce:ef:6a:0b.
Please contact your system administrator.










Issues with the hardware or operating system


Issue 1: Docker fails to start after a reboot

This can happen if the ‘docker.pid’ file was not properly cleaned up,
which causes the docker daemon to conclude that it is already running.

To fix this, remove the pid file on the router and reboot.

sudo rm /var/lib/apps/docker/1.11.2/run/docker.pid
sudo reboot








Issue 2: WiFi devices are not detected after a reboot

Occasionally, when routers start up the WiFi devices are not detected
properly.  When this happens the command iw dev will display nothing
instead of the expected devices.  This is usually remedied by rebooting.









          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            
  
Frequently Asked Questions

Please check here for any FAQ’s.





          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	paradrop 0.4 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  _static/comment.png





_static/plus.png





_static/up-pressed.png





_static/comment-bright.png





_static/file.png





_static/minus.png





_static/ajax-loader.gif





_static/down.png





_static/up.png





_static/down-pressed.png





_static/comment-close.png





search.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

chutes/provisioning.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
Provisioning Devices


Once you’ve got paradrop up and running on hardware or on a virtual machine you’ll need to provision the software.
When a brand new router starts for the first time, it doesn’t  have a place in the world yet. It doesn’t
even know its name! Additionally, the provisioning process secures your software to you and only you– its
an important security step.


The steps listed here are an intermediate process. Provisioning will occur during the installation process, check back
soon for updates.



Provisioning Routers v0.1


Before you begin, make sure you have an installed version of the CLI tools and an account with paradrop. You will
need to be logged in for every instruction that follows:


pip install pdtools
paradrop register






or if you already have pdtools installed:


paradrop login






Please choose usernames and passwords that are at least 8 characters.


Create a new router with the server. All of your routers have to have unique names, but
lets use aardvark:


paradrop router-create aardvark






Once the creation process is finished see all of your owned chutes and routers with:


paradrop list






If this is your first time, You’ll only see your single new router as part of its pdid (Link forthcoming.)
This is the id of your router to the rest of the world:


routers
    pd.joe.aardvark






At this point, however, that identity hasn’t made it onto the router yet. When you used router-create to
name your new router, the server transmitted a wealth of information. To get that information to the router you need to know the host and port of the device. When running locally,


paradrop router-provision aardvark localhost 14231






To see the logs of your router while its running, try:


paradrop logs aardvark






But be warned! Currently they’ll only respond if the router is awake.








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

chutes/flashing.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
Flashing real hardware


Check this page for instructions on flashing different types of hardware.





Flashing x86


These instructions apply to x86 routers distributed by the Paradrop development team (PC Engines APU1 boards).


Download snappy here: Ubuntu Snappy [http://releases.ubuntu.com/15.04/ubuntu-15.04-snappy-amd64-generic.img.xz]


Or run:


wget http://releases.ubuntu.com/15.04/ubuntu-15.04-snappy-amd64-generic.img.xz
unxz ubuntu-15.04-snappy-amd64-generic.img.xz






Note the instructions below are specific to Mac OS, but similar utilities exist for Linux


Run the following command from terminal to verify the path of SD card:


diskutil list






The output shows all the disks current mounted on the system. Look for the path of your SD card by size and name:


/dev/disk3
#:                       TYPE NAME                    SIZE       IDENTIFIER
0:     FDisk_partition_scheme                        *8.0 GB     disk3
1:                 DOS_FAT_32 RPISDCARD               8.0 GB     disk3s1






In this example dev/disk3 is the path the SD card.


Unmount the current partition on the SD card in order to sucessfully use dd to write:


diskutil unmount /dev/disk3s1






Use dd command to write image file (Note the r added to rdisk3 which drastically improves write performance) to the disk. (Note: bs stands for block size in bytes.)


Go to the directory where your .img located and run command below:


sudo dd if=ubuntu-15.04-snappy-amd64-generic.img of=/dev/rdisk3 bs=2m






Should take a few minutes to complete.



Connect over serial


Connect the serial output through USB and start minicom, set baud rate to 9600.


If everything worked properly you should be prompted for a username/password:


login: ubuntu
password: ubuntu






See basic snappy commands here [https://developer.ubuntu.com/en/snappy/tutorials/using-snappy/].







Flashing RaspberryPi Gen2


Make sure your Raspberry Pi is the Generation 2 version, otherwise, all Gen1 will not work since Ubuntu Snappy requires ARMv7 architecture.


Flashing image into MicroSD card for RaspberryPi 2 is similar to the instructions above.
Download the corresponding images and following the instructions above should work.


Detailed instructions can be found here [https://developer.ubuntu.com/en/snappy/start/#snappy-raspi2].





Flashing BegalBone Black


Flashing image into MicroSD card for BegalBone Black is similar to the instruction above.
Download the corresponding images and following the instruction above should work.


Detail instructions can be found here [https://developer.ubuntu.com/en/snappy/start/#try-beaglebone].






          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

chutes/tutorials.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
Paradrop Chute Tutorials


This page details out information about advanced chute architecture and installation.
We assume you have already gone through Getting Started.



Testing on your development computer


To keep the development process for Paradrop as simple as possible, we heavily encourage and support developers testing their chutes on a virtual machine (VM).



Wi-Fi in virtual machines


In order to support development on a virtual machine, you most likely need a Wi-Fi device (otherwise it wouldn’t be a router would it??).
The instructions below will show how to enable Wi-Fi specifically for USB adapters, but other internal Wi-Fi cards should follow similar steps.


Plug in the WiFi card, on Ubuntu, run lsusb, you should see:


Bus 002 Device 005: ID 148f:5372 Ralink Technology, Corp. RT5372 Wireless Adapter






Make note of the Bus and Device numbers, in this case 2 and 5.


When you go to launch your VM with a Wi-Fi device, simply run the command:


sudo pdbuild.sh up wifi-2-5






You need sudo access because the VM needs to pull in the USB device, which is privileged.


You can verify that the WiFi adapter is inside of the VM by running:


pdbuild connect

(amd64)ubuntu@localhost:~$ iw dev
phy#0
    Interface wlan0
        ifindex 4
        wdev 0x1
        addr 7c:dd:90:8f:c2:5e
        type managed






This will SSH you into the VM and print out information about the WiFi adapter, if this print out is blank, also try iw phy which prints out physical information about the Wi-Fi radio.







Wi-Fi Enabled Chutes


Here we will describe how to install a chute that utilizes a WiFi radio in the router.





Chute: Virtual Router


The chute we will install is called virtual router it is as simple as it sounds.
This chute will setup a fully functional virtual router inside of the real router hardware (or VM).
This is useful to demonstrate the full capability of Paradrop, which will setup and establish the chute, and tie together the networking components needed to allow the chute to function as a router.


Setup:



		Make sure your VM is alive and has WiFi (explained above).


		Make sure you are logged in or registered using pdtools.





Install the chute:


cd <example_apps>/virtual-router
vim config.yaml
#Setup ssid and password (defaults to "Paradrop-Network" and "ParadropRocks!")
paradrop chute install localhost 9999 config.yaml

... (install output)
Chute virtual-router create success






Now use your laptop or phone and search for the SSID you created, you should be able to associate to it and use it normally.
You can verify you are using the chute for internet by stopping it:


paradrop chute stop localhost 9999 virtual-router
Stopping chute...

Chute virtual-router stop success












          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

chutes/configuration.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
Chute Configuration Files


There are 2 files that are important to the use of Paradrop and installing chutes.



		config.yaml - contains high level information about the chute for the host OS (like WiFi SSID’s that need to be setup)


		Dockerfile - contains internal chute actions to setup the chute (like what OS version to use)





Eventually these will all fold into one glorious configuration file, but at this early stage we keep them separate.



config.yaml


Check here for information specific to the config.yaml file and its options.





Dockerfile


Check here for information on the Dockerfile and how it works.








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

chutes/installation.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
Installing Paradrop on hardware


Paradrop is distributed as a “snap” or an application that runs on Snappy Ubuntu.
You can run snappy on any x86 or armv7 board (Raspberry Pi Gen 2 or Beagleboard Black supported!)


To setup Paradrop you need to install snappy on your hardware of choice and then have snappy install paradrop.
This is a temporary method until more robust installation tools are finished.


First flash the board with the snappy image, see Flashing real hardware.


Next install docker:


ssh into the router
sudo snappy install docker






From your development machine (because you cannot install unauthorized snaps internally, only using snappy-remote for now).


Next install a few required programs not in the Snappy package system yet:


wget https://paradrop.io/storage/snaps/dnsmasq_2.74_all.snap
snappy-remote --url=ssh://<ip>:8022 install dnsmasq*.snap

wget https://paradrop.io/storage/snaps/hostapd_2.4_all.snap
snappy-remote --url=ssh://<ip>:8022 install hostapd*.snap






Finally, install Paradrop, unfortunately this is not an officially supported Snappy package yet so it must be installed manually using snappy tools:


#From the Paradrop github repo:
cd paradrop
python setup.py bdist_egg -d ../buildenv
cd ..
[ ! -f snap/bin/pipework ] && wget https://raw.githubusercontent.com/jpetazzo/pipework/3bccb3adefe81b6acd97c50cfc6cda11420be109/pipework -O snap/bin/pipework
chmod 755 snap/bin/pipework

rm -f snap/bin/pd

pex --disable-cache paradrop -o snap/bin/pd -m paradrop:main -f buildenv/
rm -rf *.egg-info

snappy build snap
snappy-remote --url=ssh://localhost:8022 install <snap-location>










          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

_images/dev_tools_map.png
paradrop.org

ARM/x86 Hardware Snappy Ubuntu VM
(Wi-Fi Router)

Developer's Computer





api/paradrop.lib.utils.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.lib.utils package



Submodules





paradrop.lib.utils.addresses module





paradrop.lib.utils.dockerapi module





paradrop.lib.utils.pdos module





paradrop.lib.utils.pdosq module





paradrop.lib.utils.restart module





paradrop.lib.utils.storage module





paradrop.lib.utils.uci module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.backend.pdconfd.config.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.backend.pdconfd.config package



Submodules





paradrop.backend.pdconfd.config.base module





paradrop.backend.pdconfd.config.command module





paradrop.backend.pdconfd.config.dhcp module





paradrop.backend.pdconfd.config.firewall module





paradrop.backend.pdconfd.config.manager module





paradrop.backend.pdconfd.config.network module





paradrop.backend.pdconfd.config.wireless module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.lib.api.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.lib.api package



Submodules





paradrop.lib.api.pdapi module





paradrop.lib.api.pdrest module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.lib.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.lib package



Subpackages




		paradrop.lib.api package
		Submodules


		paradrop.lib.api.pdapi module


		paradrop.lib.api.pdrest module


		Module contents








		paradrop.lib.config package
		Submodules


		paradrop.lib.config.configservice module


		paradrop.lib.config.devices module


		paradrop.lib.config.dhcp module


		paradrop.lib.config.dockerconfig module


		paradrop.lib.config.firewall module


		paradrop.lib.config.network module


		paradrop.lib.config.osconfig module


		paradrop.lib.config.pool module


		paradrop.lib.config.uciutils module


		paradrop.lib.config.wifi module


		Module contents








		paradrop.lib.utils package
		Submodules


		paradrop.lib.utils.addresses module


		paradrop.lib.utils.dockerapi module


		paradrop.lib.utils.pdos module


		paradrop.lib.utils.pdosq module


		paradrop.lib.utils.restart module


		paradrop.lib.utils.storage module


		paradrop.lib.utils.uci module


		Module contents
















Submodules





paradrop.lib.chute module





paradrop.lib.settings module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.backend.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.backend package



Subpackages




		paradrop.backend.exc package
		Submodules


		paradrop.backend.exc.executionplan module


		paradrop.backend.exc.files module


		paradrop.backend.exc.name module


		paradrop.backend.exc.plangraph module


		paradrop.backend.exc.resource module


		paradrop.backend.exc.runtime module


		paradrop.backend.exc.state module


		paradrop.backend.exc.struct module


		paradrop.backend.exc.traffic module


		Module contents








		paradrop.backend.fc package
		Submodules


		paradrop.backend.fc.chutestorage module


		paradrop.backend.fc.configurer module


		paradrop.backend.fc.updateObject module


		Module contents








		paradrop.backend.pdconfd package
		Subpackages
		paradrop.backend.pdconfd.config package
		Submodules


		paradrop.backend.pdconfd.config.base module


		paradrop.backend.pdconfd.config.command module


		paradrop.backend.pdconfd.config.dhcp module


		paradrop.backend.pdconfd.config.firewall module


		paradrop.backend.pdconfd.config.manager module


		paradrop.backend.pdconfd.config.network module


		paradrop.backend.pdconfd.config.wireless module


		Module contents














		Submodules


		paradrop.backend.pdconfd.client module


		paradrop.backend.pdconfd.main module


		Module contents








		paradrop.backend.pdfcd package
		Submodules


		paradrop.backend.pdfcd.apichute module


		paradrop.backend.pdfcd.apiinternal module


		paradrop.backend.pdfcd.apiutils module


		paradrop.backend.pdfcd.server module


		Module contents
















Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.backend.pdfcd.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.backend.pdfcd package



Submodules





paradrop.backend.pdfcd.apichute module





paradrop.backend.pdfcd.apiinternal module





paradrop.backend.pdfcd.apiutils module





paradrop.backend.pdfcd.server module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.lib.config.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.lib.config package



Submodules





paradrop.lib.config.configservice module





paradrop.lib.config.devices module





paradrop.lib.config.dhcp module





paradrop.lib.config.dockerconfig module





paradrop.lib.config.firewall module





paradrop.lib.config.network module





paradrop.lib.config.osconfig module





paradrop.lib.config.pool module





paradrop.lib.config.uciutils module





paradrop.lib.config.wifi module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.backend.fc.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.backend.fc package



Submodules





paradrop.backend.fc.chutestorage module





paradrop.backend.fc.configurer module





paradrop.backend.fc.updateObject module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/setup.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
setup module






          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop package



Subpackages




		paradrop.backend package
		Subpackages
		paradrop.backend.exc package
		Submodules


		paradrop.backend.exc.executionplan module


		paradrop.backend.exc.files module


		paradrop.backend.exc.name module


		paradrop.backend.exc.plangraph module


		paradrop.backend.exc.resource module


		paradrop.backend.exc.runtime module


		paradrop.backend.exc.state module


		paradrop.backend.exc.struct module


		paradrop.backend.exc.traffic module


		Module contents








		paradrop.backend.fc package
		Submodules


		paradrop.backend.fc.chutestorage module


		paradrop.backend.fc.configurer module


		paradrop.backend.fc.updateObject module


		Module contents








		paradrop.backend.pdconfd package
		Subpackages
		paradrop.backend.pdconfd.config package
		Submodules


		paradrop.backend.pdconfd.config.base module


		paradrop.backend.pdconfd.config.command module


		paradrop.backend.pdconfd.config.dhcp module


		paradrop.backend.pdconfd.config.firewall module


		paradrop.backend.pdconfd.config.manager module


		paradrop.backend.pdconfd.config.network module


		paradrop.backend.pdconfd.config.wireless module


		Module contents














		Submodules


		paradrop.backend.pdconfd.client module


		paradrop.backend.pdconfd.main module


		Module contents








		paradrop.backend.pdfcd package
		Submodules


		paradrop.backend.pdfcd.apichute module


		paradrop.backend.pdfcd.apiinternal module


		paradrop.backend.pdfcd.apiutils module


		paradrop.backend.pdfcd.server module


		Module contents














		Module contents








		paradrop.lib package
		Subpackages
		paradrop.lib.api package
		Submodules


		paradrop.lib.api.pdapi module


		paradrop.lib.api.pdrest module


		Module contents








		paradrop.lib.config package
		Submodules


		paradrop.lib.config.configservice module


		paradrop.lib.config.devices module


		paradrop.lib.config.dhcp module


		paradrop.lib.config.dockerconfig module


		paradrop.lib.config.firewall module


		paradrop.lib.config.network module


		paradrop.lib.config.osconfig module


		paradrop.lib.config.pool module


		paradrop.lib.config.uciutils module


		paradrop.lib.config.wifi module


		Module contents








		paradrop.lib.utils package
		Submodules


		paradrop.lib.utils.addresses module


		paradrop.lib.utils.dockerapi module


		paradrop.lib.utils.pdos module


		paradrop.lib.utils.pdosq module


		paradrop.lib.utils.restart module


		paradrop.lib.utils.storage module


		paradrop.lib.utils.uci module


		Module contents














		Submodules


		paradrop.lib.chute module


		paradrop.lib.settings module


		Module contents
















Submodules





paradrop.main module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/modules.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
Our Code



Subpackages




		paradrop.backend package
		Subpackages
		paradrop.backend.exc package
		Submodules


		paradrop.backend.exc.executionplan module


		paradrop.backend.exc.files module


		paradrop.backend.exc.name module


		paradrop.backend.exc.plangraph module


		paradrop.backend.exc.resource module


		paradrop.backend.exc.runtime module


		paradrop.backend.exc.state module


		paradrop.backend.exc.struct module


		paradrop.backend.exc.traffic module


		Module contents








		paradrop.backend.fc package
		Submodules


		paradrop.backend.fc.chutestorage module


		paradrop.backend.fc.configurer module


		paradrop.backend.fc.updateObject module


		Module contents








		paradrop.backend.pdconfd package
		Subpackages
		paradrop.backend.pdconfd.config package
		Submodules


		paradrop.backend.pdconfd.config.base module


		paradrop.backend.pdconfd.config.command module


		paradrop.backend.pdconfd.config.dhcp module


		paradrop.backend.pdconfd.config.firewall module


		paradrop.backend.pdconfd.config.manager module


		paradrop.backend.pdconfd.config.network module


		paradrop.backend.pdconfd.config.wireless module


		Module contents














		Submodules


		paradrop.backend.pdconfd.client module


		paradrop.backend.pdconfd.main module


		Module contents








		paradrop.backend.pdfcd package
		Submodules


		paradrop.backend.pdfcd.apichute module


		paradrop.backend.pdfcd.apiinternal module


		paradrop.backend.pdfcd.apiutils module


		paradrop.backend.pdfcd.server module


		Module contents














		Module contents








		paradrop.lib package
		Subpackages
		paradrop.lib.api package
		Submodules


		paradrop.lib.api.pdapi module


		paradrop.lib.api.pdrest module


		Module contents








		paradrop.lib.config package
		Submodules


		paradrop.lib.config.configservice module


		paradrop.lib.config.devices module


		paradrop.lib.config.dhcp module


		paradrop.lib.config.dockerconfig module


		paradrop.lib.config.firewall module


		paradrop.lib.config.network module


		paradrop.lib.config.osconfig module


		paradrop.lib.config.pool module


		paradrop.lib.config.uciutils module


		paradrop.lib.config.wifi module


		Module contents








		paradrop.lib.utils package
		Submodules


		paradrop.lib.utils.addresses module


		paradrop.lib.utils.dockerapi module


		paradrop.lib.utils.pdos module


		paradrop.lib.utils.pdosq module


		paradrop.lib.utils.restart module


		paradrop.lib.utils.storage module


		paradrop.lib.utils.uci module


		Module contents














		Submodules


		paradrop.lib.chute module


		paradrop.lib.settings module


		Module contents
















Submodules





paradrop.main module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.dock.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.dock package



Submodules





paradrop.dock.deployment module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.backend.pdconfd.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.backend.pdconfd package



Subpackages




		paradrop.backend.pdconfd.config package
		Submodules


		paradrop.backend.pdconfd.config.base module


		paradrop.backend.pdconfd.config.command module


		paradrop.backend.pdconfd.config.dhcp module


		paradrop.backend.pdconfd.config.firewall module


		paradrop.backend.pdconfd.config.manager module


		paradrop.backend.pdconfd.config.network module


		paradrop.backend.pdconfd.config.wireless module


		Module contents
















Submodules





paradrop.backend.pdconfd.client module





paradrop.backend.pdconfd.main module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

api/paradrop.backend.exc.html


    
      Navigation


      
        		
          index


        		paradrop 0.4 documentation »

 
      


    


    
      
          
            
  
paradrop.backend.exc package



Submodules





paradrop.backend.exc.executionplan module





paradrop.backend.exc.files module





paradrop.backend.exc.name module





paradrop.backend.exc.plangraph module





paradrop.backend.exc.resource module





paradrop.backend.exc.runtime module





paradrop.backend.exc.state module





paradrop.backend.exc.struct module





paradrop.backend.exc.traffic module





Module contents








          

      

      

    


    
        © Copyright 2016, Paradrop Labs.
      Created using Sphinx 1.3.5.
    

  

