paradrop Documentation
Release 0.13.2

Paradrop Labs

Mar 11, 2022

Contents

Cloud computing vs. edge computing 3
Where is the vantage point for edge computing? 5
How does it work? 7
System Architecture 9
4.1 ParaDrop Edge Compute Node e e 9
4.2 ParaDrop Cloud Controller 11
43 ParaDrop Hardware e e 12
4.4 ParaDrop APL e 13
Hardware Support 15
5.1 Virtual Machine e e e e e e e e e e e 15
52 Intel NUC . . . e 19
5.3 PCEngines APU2 e e e e e e e 20
5.4 Raspberry P12 . . . oL e e e e e 21
Quick Start 23
6.1 Create a ParaDrop Account e e e 23
6.2 Bootthe ParaDrop Node o e e e e 23
6.3 Activate aParaDropNode e 24
6.4 Installahello-world Chute e 24
Developing Applications 25
7.1 Introduction e e e e e e e e e e e e 25
7.2 Developing Light Chutes e 28
7.3 Getting Started with C L L e 29
7.4 Getting Started with GO L L e e e e e e e e e e e 32
7.5 Getting Started with Java L. L e e e e e 34
7.6 Getting Started with Node.js 36
7.7 Getting Started with Python o 37
7.8 Tutorial: Sticky Board 39
Frequently Asked Questions 45
8.1 Issues with the hardware or operating systemo 45
How to Contribute 47

9.1 ParaDrop daemon development e e e e e e e 47

9.2 Documentation and teStS e e e e e e e e e e e e e e e e e e 48
10 Host API Reference 51
10.1 Host Configuration o i i e e e e e e e e e e e e e e e e 51
10.2 Chute Configuration o v i v v et e e e e e e e e e e e e e e 56
10.3 Chute Managementt v v it e 63
10.4 Device Configuration L 69
10.5 Device Information e e e 72
11 pdtools CLI Reference 75
I1.1 pdtools o e 75
12 Source Code Reference 109
12.1 Subpackages e e e e e e e e e 109
12.2 Submodules e e e e e 181
12.3 paradrop.mainmodule 181
12.4 paradrop.plan_demomodule L e e e e 181
12.5 Module Contents v v v i i e 181
13 ParaDrop - Enabling Edge Computing at the Extreme Edge 183
14 Getting Started 185
15 Where to go from here? 187
HTTP Routing Table 189
Python Module Index 191
Index 193

paradrop Documentation, Release 0.13.2

ParaDrop is a platform for edge computing. This is best understood by comparison with the popular paradigm of cloud
computing.

Contents 1

paradrop Documentation, Release 0.13.2

2 Contents

CHAPTER 1

Cloud computing vs. edge computing

Cloud computing platforms such as Amazon EC2, Microsoft Azure, and Google Cloud Platform have grown in pop-
ularity as solutions for providing ubiquitous access to services across different user devices. Cloud computing has
benefits for infrastructure providers, service providers, and end users. Infrastructure providers, i.e., cloud platform
providers, take advantage of the economies of scale by managing and operating resources in a centralized manner.
Cloud computing also provides reliable, scalable, and elastic resources to service providers. In addition, end users can
access high-performance computing and large storage resources anywhere with Internet access at any time thanks to
the cloud computing.

Despite all of the benefits of cloud computing, there are some inherent trade-offs to the approach. Cloud computing
requires developers to host services and data on off-site data centers. That means that the computing and storage
resources are spatially distant from end-users and out of their control, which raises issues related to network latency,
security, and privacy. A growing number of high-quality services can benefit from computational tasks running closer
to end-users, especially within their own home or office. By moving the computation closer to the users, at the edge
of the network, services can take advantage of the lower latency to provide better responsiveness and user experience
as well as conserve network bandwidth.

paradrop Documentation, Release 0.13.2

4 Chapter 1. Cloud computing vs. edge computing

CHAPTER 2

Where is the vantage point for edge computing?

There are various options for placing edge computing nodes within the network. Hosting options include dedicated
compute nodes in the home or office or on server racks within the ISP network. ParaDrop takes the approach of
placing the edge computing substrate within the WiFi access points (APs). The WiFi AP is uniquely suitable for edge
computing for multiple reasons:

* WiFi APs are ubiquitous in homes and businesses and inexpensive to replace.
* WiFi APs are always on and available.

* WiFi APs reside directly on the data path between Internet services and end users.

paradrop Documentation, Release 0.13.2

6 Chapter 2. Where is the vantage point for edge computing?

CHAPTER 3

How does it work?

ParaDrop is a research effort to build a highly programmable edge computing platform. The name for the project
draws inspiration from the military use case of airdropping resources into the battlefield wherever they are needed
most. Similarly, ParaDrop enables users and developers to paradrop edge services into the edge of the network
as needed. Based on previous research work exploring the advantages of edge computing, we focus on building a
platform that is friendly to both users and developers alike.

ParaDrop provides a similar runtime environment as the cloud computing platform to developers so that developers
can easily port their services from the cloud to ParaDrop in part or in whole. It does this through lightweight con-
tainerization powered by Docker, which is already immensely popular in the cloud computing space. Containers allow
developers the flexibility to build services with the programming languages, libraries, and frameworks they prefer,
while being less resource-intensive than virtual machines. On top of that, ParaDrop offers a well-defined API that
developers can leverage to implement and deploy interesting capabilities that are only available at the edge.

paradrop Documentation, Release 0.13.2

8 Chapter 3. How does it work?

CHAPTER 4

System Architecture

This section describes some of the important architectural features of ParaDrop. Our discussion will cover four major
aspects of the ParaDrop design.

 ParaDrop Edge Compute Node
e ParaDrop Cloud Controller
* ParaDrop Hardware

* ParaDrop API

4.1 ParaDrop Edge Compute Node

The defining component of the platform, the edge compute node, is the computing platform on which your applications
and services will run. We designed the software platform entirely using open source components such as Linux and
Docker. For system-level packages such as Docker and the ParaDrop daemon, we use snap packages. The snap
package format produces self-contained applications that are then distributed and installed in a very controlled way.
This keeps the system secure and safely up-to-date through transactional updates. Edge services (called chutes) are
deployed on the platform as Docker containers. Docker enables developers to build their services as layers on top
of any of the numerous publicly available images, and complex applications can even be built by composing and
networking multiple Docker containers. All together, ParaDrop is a powerful but also lean computing platform that
works on a range of hardware from Raspberry Pis to rack-mounted servers.

paradrop Documentation, Release 0.13.2

App 1 App 2 App 3
Docker Containers 4 ry

ParaDrop Docker Add-ons

Linux

Snap Packages

| | L ol Hardware

If we zoom in to the ParaDrop module, we find this is a piece of software with many responsibilities. We have divided
the ParaDrop daemon roughly into nine submodules which are depicted below. Arrows indicate dependencies and tell
a story about how external events propagate through the system. This diagram also shows how the ParaDrop daemon
on an edge compute node interacts with other external daemons, tools, and services.

10 Chapter 4. System Architecture

paradrop Documentation, Release 0.13.2

Docker Docker
daemon Client

Cloud Controller

Change Change Controller
Execution Queue Client

v f A” v
Settings Auth*

A

System Edge
Config API

ExternéI/\IA_inux / \

dtools
daemons Kernel Chutes P

A

Monitoring

As an example, suppose a developer uses a pdfools command to install a chute on the node. We will describe how this
event triggers changes throughout the system.

1.
2.

pdtools makes a call to the Edge API to install a chute.

Before any changes are made, ParaDrop validates the identity of the user and whether the user has permission
to perform the operation through the Authentication and Authorization (Auth*) module.

. If there are no problems, ParaDrop then appends the chute installation operation to the Change Queue. If there

are other changes in progress, the chute installation will need to wait before it can proceed.

. The Change Execution engine pops the change off the Change Queue and begins the process of installing the

chute.

. Chute installation involves making external changes to the system. Some changes are through System Config-

uration such as starting a child process or setting an interface IP address. Most importantly, though, ParaDrop
needs to communicate with the Docker daemon in order to run the new application code.

. After the change is complete, the new system state is reflected in the Monitoring module, in the information that

ParaDrop sends to the Cloud Controller, and in any responses to future Edge API requests.

4.2 ParaDrop Cloud Controller

The ParaDrop cloud controller is hosted at paradrop.org and provides a central location for tracking and managing
ParaDrop nodes. It also hosts the Chute Store for software distribution. Users and developers can sign up for a free
account. For end users and administrators, it provides a dashboard to configure and monitor all ParaDrop nodes under
their control. The dashboard also enables users to manage the chutes running on their nodes. For developers, it
provides the interface through which applications can be registered as ParaDrop chutes available for installation on
routers.

4.2,

ParaDrop Cloud Controller 11

https://paradrop.org

paradrop Documentation, Release 0.13.2

3rd party services

aradrop.or
P bee API Calls

4\

Status updates

Configuration changes

DA:ervices

Due to the highly distributed nature of edge computing, the central cloud controller is not strictly required for edge
applications to operate. Each ParaDrop edge node has a publicly-documented local API and can be directly managed
using the pdtools command line utility. Considering this, we have elected not to release the source code for the cloud
controller at this time. If this would have an impact on your decision to use ParaDrop, please contact us.

4.3 ParaDrop Hardware

Although the ParaDrop software platform can run on many different types of hardware, some of its more interesting
capabilities are only available on a physical platform that has wireless network interfaces. Our original vision for
the project has always been to run ParaDrop on high-end Wi-Fi routers where it serves as the hub for connected
IoT devices and can perform computation along the path between the wireless devices and the broader Internet. Our
reference implementation uses the PC Engines APU2 single board computer with either one or two 802.11ac Wi-Fi
modules. The image below shows a router built with a PC Engines APU board.

12 Chapter 4. System Architecture

https://pypi.org/project/pdtools/
https://pcengines.ch/apu2.htm

paradrop Documentation, Release 0.13.2

You can find instructions for running ParaDrop on the PC Engines APU2 board as well as other hardware platforms
and virtual machines in the Hardware Support section.

4.4 ParaDrop API

ParaDrop exports the platform’s full capability through an API. Based on the functionality and location, the API can
be divided into two parts: the cloud API and the edge API. The cloud API provides the management interfaces for
applications to orchestrate the chutes from the cloud. Examples include resource permission management, chute de-
ployment and management, and router configuration management. The edge API exports the local context information
of the routers to the chutes to do some useful things locally. Examples include local wireless channel information and
local wireless peripheral device access.

4.4. ParaDrop API 13

paradrop Documentation, Release 0.13.2

14 Chapter 4. System Architecture

CHAPTER B

Hardware Support

This section describes various hardware platforms that we support for running the ParaDrop edge compute software.

If this is your first time working with ParaDrop and you do not have access to any of the supported hardware platforms,
we recommend starting with our pre-built virtual machine image, which is covered in the first section below.

After you have an edge node up and running, you will be able to activate the node with the cloud controller at
paradrop.org. The page Quick Start gives detailed information about that.

5.1 Virtual Machine

This guide will quickly take you through the process of running Paradrop in a virtual machine.

NOTE: These instructions assume you are running Ubuntu. The steps to launch a virtual machine may be different for
other environments.

5.1.1 Environment setup

These steps wil download our router image and launch it a virtual machine.

1. Install required packages:

sudo apt-get install gemu-kvm

2. Download the latest build of the Paradrop disk image. https://paradrop.org/release/latest/paradrop-amd64.img.
Xz

3. Extract the image:

xz —d paradrop-amd64.img.xz

4. Launch the VM:

15

https://paradrop.org/release/latest/paradrop-amd64.img.xz
https://paradrop.org/release/latest/paradrop-amd64.img.xz

paradrop Documentation, Release 0.13.2

sudo kvm -m 1024 \

-netdev user, id=net0,hostfwd=tcp::8000-:8000, hostfwd=tcp::8022-:22,
—hostfwd=tcp::8080-:80 \

—~device virtio-net-pci,netdev=net0 -drive file=paradrop-amdé64.img, format=raw

5.1.2 First Boot Setup

After starting the virtual machine for the first time, please allow about three to five minutes for the initialization
to complete. During this time, the device will finish installing software packages and prepare the device to receive
updates. After the setup is complete, a login prompt will appear. The default username is “paradrop” with no password.

The Paradrop node runs various externally-accessible services including an SSH server, a web-based administration
panel, as well as software that you decide to install. The kvim command we used includes three port forwarding rules
that expose these services to the host running the virtual machine. While following the instructions in the Quick Start
section keep the following in mind.

* The admin panel can be accessed by a web browser on the host machine via the following URL: http://localhost:
8080/#!/tools.

* The SSH server can be accessed through a non-standard port using the following command: ssh -p 8022
paradrop @localhost.

5.1.3 Alternative Setup Using virt-manager

Even though many developers prefer command line tools to manage virtual machines, some developers likes to use
GUI tools. In addition, GUI tools are convenient to support some advanced features, e.g., assigning some peripheral
devices (USB WiFi dongle) from host to virtual machines. We recommend using “virt-manager” to run ParaDrop
virtual machines. If you have not installed it on Ubuntu, you can use below command to install it:

’sudo apt—-get install virt-manager

Then we can start virt-manager with below command:

’ sudo virt-manager

We can create a VM with the ParaDrop disk image.

16 Chapter 5. Hardware Support

http://localhost:8080/#!/tools
http://localhost:8080/#!/tools

paradrop Documentation, Release 0.13.2

e

=
Name
QEMU/KVM

Connection: QEMU/KVM

Choose how you would like to install the operating system
) Local install media (ISO image or CDROM)
7 Network Install (HTTP, FTP, or NFS)
) Network Boot (PXE)
© Import existing disk image

Cancel Back Forward

Below is the configuration of the VM.

New VM

[open m Create a new virtual machine

Name
QEMU/KVM

CPU usage

Ready to begin the installation

Name: | ParaDrop-router
0S: Generic
Install: Import existing OS image
Memory: 1024 MiB
CPUs: 1
Storage: ...eng/studio/vm/paradrop-amd64.img

[] Customize configuration before install

- Network selection

| Virtual network 'default’ : NAT ~ |

Cancel Back Finish

After that, we can boot the VM and configure the first boot as we do when run the VM with command line tools.
However, the VM will have an IP address 192.168.122.x, so we can access http://<IP address of the VM> to access

5.1. Virtual Machine

17

http:/

paradrop Documentation, Release 0.13.2

the portal to upload ssh keys, and then login to it directly with the IP address.

We can assign the USB WiFi dongle from the Host to the ParaDrop VM so that the ParaDrop running on the VM can
support features related to WiFi. Before we do that, we need to disable the WiFi device for Host. We can do that with
“rfkill” command. Run below command to get the number of the WiFi device:

rfkill list

Suppose the index of the WiFi device we want to assign to the ParaDrop VM is 2, then run below command to disable
it for host OS:

rfkill block 2

Then we can add the USB WiFi dongle to the VM.

Add New Virtual Hardware

= .
= Storage USB Device
B controller

Network Host Device:

& Input 001:002 Intel Corp. Integrated Rate Matching Hub

M Graphics 001:003 Logitech, Inc. Keyboard K120

& sound 001:004 Ralink Technology, Corp. RT5372 Wireless Adapter
Serial 002:002 Inkel Corp. Integrated Rate Matching Hub

6| Parallel 002:006 Atheros Communications, Inc. AR9271 802.11n

Console 003:002 Logitech, Inc. M90/M100 Optical Mouse
Channel

-4 PClIHost Device

M \Video

B watchdog

[Filesystem
Smarktcard
USB Redirection

We can run below command in ParaDrop VM to verify that the WiFi device has been detected:

iw dev

Sometimes, we have to repeat above steps to make sure the WiFi device can be used by the ParaDrop VM.

5.1.4 Connecting to the Node

Please allow three to five minutes for the initialization of the node to complete. During this time, the node will

finish installing software packages. After the setup is complete, a login prompt will appear. The default username is
“paradrop” with no password.

18 Chapter 5. Hardware Support

paradrop Documentation, Release 0.13.2

When using virt-manager to run a Paradrop node, virt-manager will create a virtual network and assign an arbitrary IP
address to the virtual machine. Take note of the IP address displayed on the console. You may need to use this address
to connect to the admin panel or use pdtools commands. For example, the console below indicates that the node has
IP address 192.168.122.183.

Ubuntu Core 16 on 192.168.122.183 (ttyl)

localhost login:

5.2 Intel NUC

These instructions will help you install the ParaDrop daemon on the Intel NUC platform. At the end of this process,
you will have a system ready for installing chutes.

We have specifically tested this process on the Skull Canyon (NUC6i7KYK) platform, which we recommend for high
performance edge-computing needs.

5.2.1 Hardware and software requirements

Intel NUC Skull Canyon NUC6i7KYK

The Intel NUC devices generally do not come with memory or storage pre-installed.

Memory: we recommend at least one § GB DDR4 SODIMM.

Storage: we have generally found one 16 GB SD card to be sufficient for our storage needs, but we
recommend using one MX300 M.2 SSD card for the higher read and write speeds.

We recommend updating the BIOS on the NUC. Follow the instructions on the Intel support site.
e 2 USB 2.0 or 3.0 flash drives (each 4 GB minimum)

* A monitor with an HDMI interface

* A network connection with Internet access

e An Ubuntu Desktop 16.04.1 LTS image.

e A ParaDrop disk image.

5.2.2 Preparing for installation

1. Download the Ubuntu Desktop image and prepare a bootable USB flash drive.

2. Download the ParaDrop disk image and copy the file to the second flash drive.

5.2.3 Boot from the Live USB flash drive

1. Insert the Live USB Ubuntu Desktop flash drive in the NUC.
2. Start the NUC and push F10 to enter the boot menu.
3. Select the USB flash drive as a boot option.

4. Select “Try Ubuntu without installing”.

5.2. Intel NUC 19

http://www.intel.com/content/www/us/en/support/boards-and-kits/000005850.html
http://releases.ubuntu.com/16.04.1/ubuntu-16.04.1-desktop-amd64.iso
https://paradrop.org/release/latest/paradrop-amd64.img.xz

paradrop Documentation, Release 0.13.2

5.2.4 Flash ParaDrop

1.
2.

3.

Once the system is ready, insert the second USB flash drive which contains the ParaDrop disk image.

Open a terminal and run the following command, where <disk label> is the name of the second USB flash drive.
We recommend that you double-check that /dev/sda is the desired destination before running dd.

xzcat /media/ubuntu/<disk label>/paradrop_router.img.xz | sudo dd of=/dev/sda,,
—bs=32M status=progress; sync

Reboot the system and remove all USB flash drives when prompted to do so.

5.2.5 First boot

5.3

. At the Grub menu, press ‘e’ to edit the boot options.

Find the line that begins with “linux” and append the option “nomodeset”. It should look like “linux
(loop)/kernel.img $cmdline nomodeset”. Adding this option will temporarily fix a graphics issue that is known
to occur with the Intel NUC.

Press F10 to continue booting.

Please allow three to five minutes for the initialization to complete. During this time, the device will finish
installing software packages and prepare the device to receive updates. After the setup is complete, a login
prompt will appear. The default username is “paradrop” with no password.

Take note of the IP address displayed on the console. You may need to use this address to connect to the
admin panel or use pdtools commands. For example, the console below indicates that the node has IP address
10.42.0.162.

Ubuntu Core 16 on 10.42.0.162 (ttyl)

localhost login:

PC Engines APU2

5.3.1 Hardware requirements

1x system board (apu2c4)

1x case (caseld2u for two antennas or caseld2redu6 for up to six antennas)

1-2x miniPCle Wi-Fi modules (wle200nx for 802.11n or wle600vx for 802.11ac)
2-4x pigtails (pigsma)

2-4x antennas (antsmadb)

1x power supply (acl2vus2)

1x storage module (sd4b) or alternative (see below)

All of these parts are available internationally from PC Engines.

20

Chapter 5. Hardware Support

http://pcengines.ch/apu2c4.htm
http://pcengines.ch/case1d2u.htm
https://pcengines.ch/case1d2redu6.htm
http://pcengines.ch/wle200nx.htm
http://pcengines.ch/wle600vx.htm
http://pcengines.ch/pigsma.htm
http://pcengines.ch/antsmadb.htm
http://pcengines.ch/ac12vus2.htm
http://pcengines.ch/sd4b.htm
https://pcengines.ch/order.htm

paradrop Documentation, Release 0.13.2

5.3.2 Storage Module

The APU can boot from an SD card or an m-SATA SSD. These instructions are written assuming you will use an SD
card because they are easier to flash from another machine. However, we do frequently build Paradrop routers with
SSDs to take advantage of the higher storage capacity and read/write speeds. The 4GB pSLC module listed above is
known to be very reliable, but you may also prefer a larger SD card.

5.3.3 Preparing the SD card

1. Download the latest build of the Paradrop disk image

2. Insert the SD card into the machine you used to download the image and find the device node for the card. This
is often “/dev/sdb”, but please make sure, as the next command will overwrite the contents of whatever device
you pass.

3. Copy (“flash”) the Paradrop image to the SD card.:

xzcat paradrop-amd64.img.xz | sudo dd of=<DEVICE> bs=32M status=progress; sync

4. Remove the SD card and proceed to assemble the router.

Please note that in order to make the SD card bootable, it is not enough to copy the disk image file to an existing
filesystem on the SD card. Instead, one must overwrite the contents of the SD card including MBR, partition table,
and data with the provided disk image. In Linux, you can do this with the dd command. If you are using Windows,
we suggest using the win32-image-writer tool. Follow the Sourceforge link to download the installer.

5.3.4 Connecting to the Serial Console

If you know the IP address of the router, e.g. because you have access to the DHCP server upstream from the router,
then you can skip this step and proceed with the steps for activating and using your router described in the section
Quick Start.

If you do not have network access to the Paradrop router for any reason, you can always connect a serial cable to the
9-pin serial port. The default configuration is 9600 8N1. If you are using PuTTY under Windows, make sure that you
have entered the correct COM port for your serial cable. It may not be “COM1”. You can use the chgport command
or open the Windows Device Manager tool to find the correct COM port. At the login prompt, the default username is
“paradrop” with no password.

5.4 Raspberry Pi 2

5.4.1 Hardware requirements

* 1x Raspberry Pi 2 (recommended: 1 GB memory)

¢ 1x micro SD card (minimum: 4 GB, recommended: 16 GB)

5.4.2 Preparing the SD card

1. Download the latest build of the Paradrop disk image

2. Insert the SD card into the machine you used to download the image and find the device node for the card. This
is often “/dev/sdb”, but please make sure, as the next command will overwrite the contents of whatever device
you pass.

5.4. Raspberry Pi 2 21

https://paradrop.org/release/latest/paradrop-amd64.img.xz
https://launchpad.net/win32-image-writer
https://paradrop.org/release/latest/paradrop-pi2.img.xz

paradrop Documentation, Release 0.13.2

3. Copy (“flash”) the Paradrop image to the SD card.:

xzcat paradrop-pi2.img.xz | sudo dd of=<DEVICE> bs=32M status=progress; sync

4. Insert the SD card in the Raspberry Pi and proceed to power it.

Please note that in order to make the SD card bootable, it is not enough to copy the disk image file to an existing
filesystem on the SD card. Instead, one must overwrite the contents of the SD card including MBR, partition table,
and data with the provided disk image. In Linux, you can do this with the dd command. If you are using Windows,
we suggest using the win32-image-writer tool. Follow the Sourceforge link to download the installer.

5.4.3 First Boot

The first time you boot the target device, ensure that it is connected to a wired network. Identify the IP address that the
Raspberry Pi device received from the network and proceed to the activation step described in the section Quick Start.

22 Chapter 5. Hardware Support

https://launchpad.net/win32-image-writer

CHAPTER O

Quick Start

This section goes through the steps to create a ParaDrop account, activate a ParaDrop node, and install a hello-world
chute on the router.

If you have received a device with ParaDrop already installed, you can start here. If you do not have a ParaDrop-
enabled device, please visit the Hardware Support section to learn about supported hardware or download a virtual
machine image.

6.1

Create a ParaDrop Account

With a free account on the ParaDrop cloud controller, users can manage one or more ParaDrop nodes through a simple
web interface.

1.

6.2

Note:

Signup at https://paradrop.org/signup. You will receive a confirmation email from paradrop.org after you finish
the signup.

Confirm your registration in the email.

Boot the ParaDrop Node

some of these steps are specific to the PC Engines APU/APU2 hardware.

. Using an Ethernet cable, connect the WAN port of the ParaDrop router to a modem, switch, or other device with

access to the Internet.

Connect the power supply. To avoid malfunctioning due to arcing, it is recommended to connect the barrel
connector to DC jack on the back of the router first and connect the adapter to a power outlet second.

Allow the router 1-2 minutes to start up, especially on the first boot.

Connect a device (laptop, phone, etc.) either to one of the LAN ports on the back of the router or to its WiFi
network. Typically, the router will be preconfigured with an open ESSID called “ParaDrop”. If the WiFi network
has a password, that information will be provided separately.

23

https://paradrop.org/signup

paradrop Documentation, Release 0.13.2

6.3 Activate a ParaDrop Node

Activation associates the router with your account on paradrop.org so that you can manage the router and chutes
through the cloud controller. Starting with version 0.13, ParaDrop nodes in most cases will automatically configure
themselves to connect to the cloud controller.

1.

Open the node administration panel at http://<node_ip_address>. Alternatively, you can open
‘http://paradrop.io‘_ if your device is connected to the LAN port of the node or its WiFi network. You may
be prompted for a username and password. The default username is “paradrop” with an empty password. If a
password was configured by default, you will have received information about the password with the device.

Starting with version 0.13, ParaDrop nodes will in most cases automatically configure themselves to commu-
nicate with the cloud controller. In that case, you will see checkmarks appear on the “WAMP Router” and
“ParaDrop Server” lines of the landing page. Click the “View the router on paradrop.org” button to transfer
ownership of the node to your account on paradrop.org. You may be prompted to log in with your ParaDrop
account. If checkmarks did not appear on the landing page, or you were not able to claim the node, proceed to
steps 3-6. Otherwise, your node is activated.

. Navigate to the Routers List page. If your router came with a Claim Token, enter that here and skip steps 3-5.

Otherwise if you do not have a Claim Token, click Create Router. Give your router a unique name and an
optional location and description to help you remember it and click Submit.

On the router page, find the “Router ID” and “Password” fields. You will need to copy this information to the
router so that it can connect to the controller.

On the router admin panel (http://<router_ip_address> or ‘http://paradrop.io‘_), click the button “Activate the
router with a ParaDrop Router ID” or “Activate the router with another ParaDrop Router ID” and enter the
information from the paradrop.org router page. If the activation was successful, you should see checkmarks
appear on the “WAMP Router” and “ParaDrop Server” lines. You may need to refresh the page to see the
change.

After you activate your router, you will see the router status is online at https://paradrop.org/routers.

6.4 Install a hello-world Chute

Make sure you have an activated, online router.

Go to the Chute Store page on paradrop.org. There you will find some public chutes such as the hello-world
chute. You can also create your own chutes here.

Click on the hello-world chute, click Install, click your router’s name to select it, and finally, click Install.

That will take you to the router page again where you can click the update item to monitor its progress. When
the installation is complete, an entry will appear under the Chutes list.

. The hello-world chute starts a webserver, which is accessible at http://<router-ip-address>/chutes/hello-world.

Once the installation is complete, test it in a web browser.

24

Chapter 6. Quick Start

https://paradrop.org
http:/
https://paradrop.org/routers
http:/
https://paradrop.org/routers
https://paradrop.org/chutes
http:/

CHAPTER /

Developing Applications

This section of the document is devoted to describing the edge computing services (chutes) that run on ParaDrop.
There are two categories of ParaDrop applications - pure edge applications and cloud-edge hybrid applications. The
pure edge applications have standalone chutes, which can be deployed in the ParaDrop routers. Cloud-edge hybrid
applications have both a cloud component and an edge component. In this section, we will focus on the chute devel-
opment, in other words, the edge component.

7.1 Introduction

ParaDrop is a software platform that enables services to run on Wi-Fi routers. We call these services chutes as in
parachutes.

ParaDrop runs on top of Ubuntu Core, a lightweight, transactionally updated operating system designed for deploy-
ments on embedded and IoT devices, cloud and more. It runs a new breed of secure, remotely upgradeable Linux app
packages known as snaps. We support chute deployment through containerization powered by Docker.

Minimally, a chute has a Dockerfile, which contains instructions for building and preparing the application to run on
ParaDrop. A chute will usually also require scripts, binaries, configuration files, and other assets. For integration with
the ParaDrop toolset, we highly recommend developing a chute as a GitHub project, but other organization methods
are possible.

We will examine the hello-world chute as an example of a complete ParaDrop application.

7.1.1 Structure

Our hello-world chute is a git project with the following files:

chute/index.html
Dockerfile
README . md
paradrop.yaml

25

https://developer.ubuntu.com/core
https://www.docker.com/
https://github.com
https://github.com/ParadropLabs/hello-world

paradrop Documentation, Release 0.13.2

The top-level contains a README, a Dockerfile, and a special file called “paradrop.yaml”, which will be discussed
below. As a convention, we place files that will be used by the running application in a subdirectory called “chute”.
This is not necessary but helps keep the project organized. Valid alternatives include “src” or “app”.

7.1.2 paradrop.yaml

The paradrop.yaml file, which is unique to the ParaDrop platform, contains important metadata about the project.
ParaDrop uses this information to run the chute on an edge node and also determine what to present to the user.

Here is an example from the hello-world chute:

name: hello-world
description: This project demonstrates a very simple...
version: 1
type: normal
config:
web:
port: 80

This example is fairly self-explanatory. It shows a name, description, and version for the chute, which will be shown
on interfaces that present the running software on the node.

This example is based on an older, more limited syntax, which can only run one service per chute. For a more complete
example and documentation, refer to Chute Configuration.

type: normal

This declaration indicates the type of the chute, which tells ParaDrop how to build and install it. Normal chutes build
from a Dockerfile, which we see is present in this project. This is in contrast with light chutes described in Developing
Light Chutes.

port: 80

This declaration indicates that the chute runs a web server on port 80. ParaDrop will use this information to expose
the service externally to users.

7.1.3 Dockerfile

The Dockerfile contains instructions for building and preparing an application to run on ParaDrop. Here is a minimal
Dockerfile for our hello-world chute:

FROM nginx
ADD chute/index.html /usr/share/nginx/html/index.html

FROM nginx

The FROM instruction specifies a base image for the chute. This could be a Linux distribution such as “ubuntu:14.04”
or an standalone application such as “nginx”. The image name must match an image in the Docker public registry. We
recommend choosing from the official repositories. Here we use “nginx” for a light-weight web server.

ADD <source> <destination>

The ADD instruction copies a file or directory from the source repository to the chute filesystem. This is useful for
installing scripts or other files required by the chute and are part of the source repository. The <source> path should
be inside the respository, and the <destination> path should be an absolute path or a path inside the chute’s working
directory. Here we install the index.html file from our source repository to the search directory used by nginx.

26 Chapter 7. Developing Applications

https://hub.docker.com/explore/

paradrop Documentation, Release 0.13.2

Other useful commands for building chutes are RUN and CMD. For a complete reference, please visit the official
Dockerfile reference.

Here is an alternative implementation of the hello-world Dockerfile that demonstrates some of the other useful instruc-
tions.

FROM ubuntu:14.04

RUN apt-get update && apt-get install -y nginx

ADD chute/index.html /usr/share/nginx/html/index.html
EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

Here we use a RUN instruction to install nginx and a CMD instruction to set nginx as the command to run inside the
chute container. Using “ubuntu:14.04” as the base image gives access to any packages that can be installed through
apt-get.

7.1.4 Persistent Data

Each running chute has a persistent data storage that is not visible to other chutes. By default the persistent data
directory is named ‘“/data” inside the chute’s filesystem. Files stored in this directory will remain when upgrading or
downgrading the chute and are only removed when uninstalling the chute.

7.1.5 System Information

The ParaDrop daemon share system information with chutes through a read-only directory named “/paradrop”. Chutes
that are configured with a WiFi access point will find a file in this directory that lists wireless clients. In future versions
there will also be information about Bluetooth and other wireless devices.

dnsmasq-wifi.leases
This file lists client devices that have connected to the chute’s WiFi network and received a DHCP lease. This is a
plain text file with one line for each device containing the following space-separated fields.

1. DHCP lease expiration time (seconds since Unix epoch).

2. MAC address.

3. IP address.

4. Host name, if known.

5. Client ID, if known; the format of this field varies between devices.

The following example shows two devices connected to the chute’s WiFi network.

1480650200 00:11:22:33:44:55 192.168.128.130 android-ffeeddccbbaa9988 =
1480640500 00:22:44:66:88:aa 192.168.128.170 someones—-iPod 01:00:22:44:66:88:aa

7.1.6 Chute-to-Host API

The Paradrop daemon exposes some functionality and configuration options to running chutes through an HTTP APL
This aspect of Paradrop is under rapid development, and new features will be added with every release. The host
API is available to chutes through the URL “http://paradrop.io/api/v1”. Paradrop automatically configures chutes to
resolve “paradrop.io” to the ParaDrop device itself, so these requests go to the ParaDrop daemon running on the router
and not to an outside server.

7.1. Introduction 27

https://docs.docker.com/engine/reference/builder/
http://paradrop.io/api/v1

paradrop Documentation, Release 0.13.2

Authorization

In order to access the host API, chutes must pass a token with every request that proves the authenticity of the request.
When chutes are installed on a ParaDrop router, they automatically receive a token through an environment variable
named “PARADROP_API_TOKEN”. The chute should read this environment variable and pass the token as a Bearer
token in an HTTP Authorization header. Here is an example in Python using the Requests library.:

import os
import requests

CHUTE_NAME = os.environ.get ('PARADROP_CHUTE_NAME', 'chute')
API_TOKEN = os.environ.get ('PARADROP_API_TOKEN', 'NA'")

headers = { 'Authorization': 'Bearer ' + API_TOKEN }
url = 'http://paradrop.io/api/vl/chutes/{}/networks'.format (CHUTE_NAME)
res = requests.get (url, headers=headers)

print (res.json())

Please refer to Host API Reference for a complete listing of API functions.

7.2 Developing Light Chutes

Light chutes build and install the same way as normal chutes and can do many of the same things. However, they
make use of prebuilt base images that are optimized for different programming languages. We offer light chutes as
a convenience for projects that only rely on one of the supported languages and do not need to install other system
packages.

Light chutes offer a few advantages over normal chutes.

¢ Safety: Light chutes have stronger confinement properties, so you can feel safer installing a light chute written
by a third party developer.

¢ Fast installation: Light chutes use a common base image that may already be cached on the router, so installa-
tion can be very fast.

¢ Simplicity: You do not need to learn how to write and debug a Dockerfile to develop a chute. Instead, you can
use the package management tools you may already be using (e.g. package.json for npm and requirements.txt

for pip).

 Portability: With ARM suppport coming soon for ParaDrop, your light chutes will most likely run on ARM
with extra work on your part. This is not the case for normal chutes that use a custom Dockerfile.

We will look at the node-hello-world chute as an example of a light chute for ParaDrop.

7.2.1 Structure

Our hello-world chute is a git project with the following files:

README . md
index. js
package. json
paradrop.yaml

The project contains the typical files for a node.js project as well as a special file called “paradrop.yaml”.

28 Chapter 7. Developing Applications

http://docs.python-requests.org/en/master/
https://github.com/ParadropLabs/node-hello-world

paradrop Documentation, Release 0.13.2

7.2.2 paradrop.yaml

The paradrop.yaml file contains information that ParaDrop needs in order to run the chute. Here are the contents for
the hello-world example:

name: node-hello-world
description: This chute demonstrates a simple web service.
source:

type: git

url: https://github.com/ParadroplLabs/node-hello-world
type: light
use: node
command: node index.js
config:

web:

port: 3000

Most of these fields are self-explanatory and covered in the /ntroduction section.
type: light

This indicates that we are building a light chute as opposed to a normal chute, which would require a Dockerfile be
present.

use: node

This indicates that we are using the node base image for this chute. You should choose the base image appropriate for
your project. Examples of supported images are node and python2.

This is handled in an interesting way by ParaDrop. ParaDrop does not use one single node image. Rather, the execution
engine considers the architecture of the underlying hardware and uses a node image built for that architecture.

command: node index.js

This line indicates the command for starting your application. You can either specify it this way, as a string with
spaces between the parameters, or you can use a list of strings. The latter format would be particularly useful if your
parameters include spaces. Here is an example:

command:
- node
- index. js

7.2.3 Persistent Data

Each running chute has a persistent data storage that is not visible to other chutes. By default the persistent data
directory is named ‘“/data” inside the chute’s filesystem. Files stored in this directory will remain when upgrading or
downgrading the chute and are only removed when uninstalling the chute.

7.3 Getting Started with C
This tutorial will teach you how to build a “Hello, World!” chute using C and the microhttpd library.

7.3.1 Prerequisites

Please make sure you have pdtools v0.12.0 or newer installed.

7.3. Getting Started with C 29

paradrop Documentation, Release 0.13.2

pip install pdtools~=0.12

7.3.2 Set up

Make a new directory.

mkdir c-hello-world
cd c-hello-world

7.3.3 Create a chute configuration

Use the pdtools interactive initialize command to create a paradrop.yaml file for your chute.

python -m pdtools chute initialize

Use the following values as suggested responses to the prompts. If you have a different version of pdtools installed,
the prompts may be slightly different.

name: c-hello-world
description: Hello World chute for ParaDrop using C.
type: normal

The end result should be a paradrop.yaml file similar to the following.

description: Hello World chute for ParaDrop using C.
name: c-hello-world
services:
main:
source:
type: normal
version: 1

7.3.4 Develop the Application

Create a file named hello.c with the following code. The code for this application comes from an example file
distributed with the microhttpd library.

/ *

This file is part of libmicrohttpd

(C) 2007 Christian Grothoff (and other contributing authors)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

(continues on next page)

30 Chapter 7. Developing Applications

paradrop Documentation, Release 0.13.2

(continued from previous page)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <microhttpd.h>

#define PAGE "<html><head><title>libmicrohttpd demo</title></head><body>libmicrohttpd,,
—demo</body></html>"

static int
ahc_echo (void =xcls,
struct MHD_Connection *connection,
const char =xurl,
const char smethod,
const char xversion,
const char xupload_data, size_t =*upload_data_size, void xxptr)

static int aptr;

const char *me = cls;

struct MHD_Response xresponse;
int ret;

if (0 != strcmp (method, "GET"))
return MHD_NO; /+ unexpected method =*/
if (&aptr != xptr)
{
/+ do never respond on first call */
*ptr = &aptr;
return MHD_YES;
}
«ptr = NULL; /* reset when done =/
response = MHD_create_response_from_buffer (strlen (me),
(void *) me, MHD_RESPMEM PERSISTENT) ;
ret = MHD_queue_response (connection, MHD_HTTP_OK, response);
MHD_destroy_response (response);
return ret;

int
main (int argc, char =xconst xargv)
{

struct MHD_Daemon =d;

if (argc != 2)
{
printf (" PORT\n", argv([0]);
return 1;
}
d = MHD_start_daemon (
MHD_USE_SELECT_INTERNALLY | MHD_USE_DEBRUG,
atoi (argv([1l]),

NULL, NULL, &ahc_echo, PAGE,
MHD_OPTION_CONNECTION_TIMEOUT, (unsigned int) 120,
MHD_OPTION_END) ;

if (d == NULL)
return 1;

(continues on next page)

7.3. Getting Started with C 31

paradrop Documentation, Release 0.13.2

(continued from previous page)

pause ();
MHD_stop_daemon (d);
return 0;

Create a file named Dockerfile with the following contents. This project demonstrates what is called a multi-stage
build (https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds). The first stage in-
stalls development packages for compiling the project. The second stage merely copies the compiled binary and
installs binary shared libraries that are required in order to run the program.

FROM ubuntu:16.04

COPY hello.c

RUN apt-get update && apt-get install -y libmicrohttpd-dev
RUN gcc —-o hello hello.c -lmicrohttpd

FROM ubuntu:16.04

RUN apt-get update && apt-get install -y libmicrohttpdlO
COPY —-from=0 hello /usr/bin/hello

EXPOSE 8888

CMD ["hello", "8888"]

7.3.5 Wrap Up

The web server in this application listens on port 8888. We need to include that information in the paradrop.yaml file
as well. Use the following command to alter the configuration file.

’python -m pdtools chute enable-web-service 8888

After that, you can continue developing the chute and install it on a ParaDrop node.

’python -m pdtools node —-target=<node address> install-chute

7.4 Getting Started with Go

This tutorial will teach you how to build a “Hello, World!” chute using Go.

7.4.1 Prerequisites

Make sure you have Go installed as well as ParaDrop pdtools (v0.12.0 or newer).

pip install pdtools~=0.12

7.4.2 Set up

Make a new directory.

mkdir go-hello-world
cd go—hello-world

32 Chapter 7. Developing Applications

https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds

paradrop Documentation, Release 0.13.2

7.4.3 Create a chute configuration

Use the pdtools interactive initialize command to create a paradrop.yaml file for your chute.

python -m pdtools chute initialize

Use the following values as suggested responses to the prompts. If you have a different version of pdtools installed,
the prompts may be slightly different.

name: go-hello-world

description: Hello World chute for ParaDrop using Go.
type: light

image: go

command: app

The end result should be a paradrop.yaml file similar to the following.

description: Hello World chute for ParaDrop using Go.
name: go—-hello-world
services:
main:
command: app
image: go
source:
type: light
version: 1

7.4.4 Develop the Application

Create a file name main . go with the following code.

package main

import (
n fmt n
"net/http"

func GetIndex (w http.ResponseWriter, r xhttp.Request) {
fmt .Fprintf (w, "Hello, World!\n")

func main () |
fmt .Println("Listening on :8000")
http.HandleFunc ("/", GetIndex)
http.ListenAndServe (":8000", nil)

Run the application locally with the following command.

go run main.go

Then load http://localhost:8000/ in a web browser to see the result.

7.4. Getting Started with Go 33

paradrop Documentation, Release 0.13.2

7.4.5 Wrap Up

The web server in this application listens on port 8000. We need to include that information in the paradrop.yaml file
as well. Use the following command to alter the configuration file.

’python -m pdtools chute enable-web-service 8000

After that, you can continue developing the chute and install it on a ParaDrop node.

’python -m pdtools node —--target=<node address> install-chute

7.5 Getting Started with Java

This tutorial will teach you how to build a “Hello, World!” chute using Java and Maven.

7.5.1 Prerequisites

Make sure you have Java 1.8+, Maven 3.0+, as well as ParaDrop pdtools (v0.12.0 or newer).

pip install pdtools~=0.12

7.5.2 Set up

Use Maven to set up an empty project.

mvn archetype:generate -Dgroupld=org.paradrop.app -DartifactId=java-hello-world -
—DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
cd java-hello-world

7.5.3 Create a chute configuration

Use the pdtools interactive initialize command to create a paradrop.yaml file for your chute.

python -m pdtools chute initialize

Use the following values as suggested responses to the prompts. If you have a different version of pdtools installed,
the prompts may be slightly different.

name: java-hello-world

description: Hello World chute for ParaDrop using Java.

type: light

image: maven

command: java -cp target/java-hello-world-1.0-SNAPSHOT. jar org.paradrop.app.App

The end result should be a paradrop.yaml file similar to the following.

description: Hello World chute for ParaDrop using Java.
name: java-hello-world
services:

main:

(continues on next page)

34 Chapter 7. Developing Applications

paradrop Documentation, Release 0.13.2

(continued from previous page)

command: Jjava -cp target/java-hello-world-1.0-SNAPSHOT. jar org.paradrop.app.App
image: maven
source:
type: light
version: 1

7.5.4 Develop the Application

Replace the automatically-generated application code in src/main/java/org/paradrop/app/App. java
with the following code.

package org.paradrop.app;

import java.io.IOException;
import java.io.OutputStream;
import java.net.InetSocketAddress;

import com.sun.net.httpserver.HttpExchange;
import com.sun.net.httpserver.HttpHandler;
import com.sun.net.httpserver.HttpServer;

public class App {
public static void main(String[] args) throws Exception ({
System.out.println("Listening on :8000");
HttpServer server = HttpServer.create (new InetSocketAddress (8000), 0);
server.createContext ("/", new GetIndex());
server.start ();

static class GetIndex implements HttpHandler ({

@Override
public void handle (HttpExchange t) throws IOException {
String response = "Hello, World!";

t .sendResponseHeaders (200, response.length());
OutputStream os = t.getResponseBody () ;
os.write (response.getBytes());

os.close();

Run the application locally with the following commands.

mvn package
java -cp target/java-hello-world-1.0-SNAPSHOT. jar org.paradrop.app.App

Then load http://localhost:8000/ in a web browser to see the result.

7.5.5 Wrap Up

The web server in this application listens on port 8000. We need to include that information in the paradrop.yaml file
as well. Use the following command to alter the configuration file.

7.5. Getting Started with Java 35

paradrop Documentation, Release 0.13.2

’python -m pdtools chute enable-web-service 8000

After that, you can continue developing the chute and install it on a ParaDrop node.

’python -m pdtools node —-target=<node address> install-chute

7.6 Getting Started with Node.js

This tutorial will teach you how to build a “Hello, World!” chute using Node.js and Express.

7.6.1 Prerequisites

Make sure you have Node.js (v6 or newer) installed as well as ParaDrop pdtools (v0.12.0 or newer).

pip install pdtools~=0.12

7.6.2 Set up

Make a new directory.

mkdir node-hello-world
cd node-hello-world

7.6.3 Create a chute configuration

Use the pdtools interactive initialize command to create a paradrop.yaml file for your chute.

python -m pdtools chute initialize

Use the following values as suggested responses to the prompts. If you have a different version of pdtools installed,
the prompts may be slightly different.

name: node-hello-world

description: Hello World chute for ParaDrop using Node. js.
type: light

image: node

command: node index.js

The end result should be a paradrop.yaml file similar to the following.

description: Hello World chute for ParaDrop using Node.Jjs.
name: node-hello-world
services:
main:
command: node index.js
image: node
source:
type: light
version: 1

36 Chapter 7. Developing Applications

paradrop Documentation, Release 0.13.2

The pdtools chute init command will also create a package.json file for you if one did not already exist, so
there is no need to run npm init after running pdtools chute init.

7.6.4 Install Dependencies

Use the following command to install some dependencies. We will be using Express as a simple web server.

The ——save option instructs npm to save the packages to the package.json file. When installing the chute, ParaDrop
will read package.json to install the same versions of the packages that you used for development.:

npm install --save express@”4.16.1

7.6.5 Develop the Application

We indicated that index.js is the entrypoint for the application, so we will create a file named index . js and put our
code there.

const express = require('express')
const app = express|()

app.get ('/', function (req, res) {
res.send('Hello, World!")
})

app.listen (3000, function() {
console.log('Listening on port 3000.")

})

Run the application locally with the following command.

node index.js

Then load http://localhost:3000/ in a web browser to see the result.

7.6.6 Wrap Up

The web server in this application listens on port 3000. We need to include that information in the paradrop.yaml file
as well. Use the following command to alter the configuration file.

’python -m pdtools chute enable-web-service 3000

After that, you can continue developing the chute and install it on a ParaDrop node.

’python -m pdtools node —-target=<node address> install-chute

7.7 Getting Started with Python

This tutorial will teach you how to build a “Hello, World!” chute using Python and Flask.

7.7. Getting Started with Python 37

paradrop Documentation, Release 0.13.2

7.7.1 Prerequisites

Make sure you have Python 2 installed as well as ParaDrop pdtools (v0.12.0 or newer).

pip install pdtools~=0.12

7.7.2 Set up

Make a new directory.

mkdir python-hello-world
cd python-hello-world

7.7.3 Create a chute configuration

Use the pdtools interactive initialize command to create a paradrop.yaml file for your chute.

python -m pdtools chute initialize

Use the following values as suggested responses to the prompts. If you have a different version of pdtools installed,
the prompts may be slightly different.

name: python-hello-world

description: Hello World chute for ParaDrop using Python.
type: light

image: python2

command: python2 -u main.py

The end result should be a paradrop.yaml file similar to the following.

description: Hello World chute for ParaDrop using Python.
name: python-hello-world
services:
main:
command: python2 -u main.py
image: python2
source:
type: light
version: 1

7.7.4 Install Dependencies

We will use pip and virtualenv to manage dependencies for the project. First set up a virtual enviroment.

virtualenv venv
source venv/bin/activate

Use the following command to install some dependencies. We will be using Flask as a simple web server.

pip install Flask==0.12.2

Finally, save the version information to a file called requirements . txt. When installing the chute, ParaDrop will
use this file to install the same versions of the packages that you used during development.

38 Chapter 7. Developing Applications

paradrop Documentation, Release 0.13.2

pip freeze >requirements.txt

7.7.5 Develop the Application

We indicated that main.py is the entrypoint for the application, so we will create a file named main.py and put our
code there.

from flask import Flask
app = Flask(__name_)
Qapp.route('/")

def index():

return 'Hello, World!"'

if name == '__main__':
app.run (host='0.0.0.0", port=5000)

Run the application locally with the following command.

python main.py

Then load http://localhost:5000/ in a web browser to see the result.

7.7.6 Wrap Up

The web server in this application listens on port 5000. We need to include that information in the paradrop.yaml file
as well. Use the following command to alter the configuration file.

’python -m pdtools chute enable-web-service 5000

After that, you can continue developing the chute and install it on a ParaDrop node.

’python -m pdtools node —-target=<node address> install-chute

7.8 Tutorial: Sticky Board

This tutorial will teach you how to build a fully-functional ParaDrop application from scratch. Through the tutorial,
we will build a “Sticky Board”, a local board where visitors can post images for others to see. We will be using Node.js
to build the application, so make sure you have that installed on your development machine.

7.8.1 Set Up

Make a new directory, and initialize a git repository:

mkdir sticky_board
cd sticky_board
git init

mkdir views

7.8. Tutorial: Sticky Board 39

paradrop Documentation, Release 0.13.2

7.8.2 Setup Node.js Project

We will be using npm to manage Node.js packages. You can use the npm init command to get started or create a
file called package.json. with the following contents:

{
"name": "sticky_board",
"version": "1.0.0",
"description": "Post images for others to see.",
"main": "index.js",
"author": "ParaDrop Team"

7.8.3 Install Dependencies

Use the following command to install some dependencies that we will be using to build the application. We use express
as a simple web server along with a plugin for accepting file uploads. We will also use Embedded JS (EJS) for simple
templating, demonstrated later in this tutorial.

The ——save option instructs npm to save the packages to the package.json file. ParaDrop will read package.json to
install the same versions of the packages that you used for development.

npm install --save ejs@"2.5.6 express(@”4.14.1 express-fileupload@”0.1.1

7.8.4 Hello World

Let’s start with a minimal Hello World Express.js example. Create a file named index. js and add the following
code:

var express = require('express');
var app = express{();

app.get ('/', function (req, res) {
res.send('Hello World!");
}) i

app.listen (3000, function() {
console.log('Listening on port 3000.");
1)

Run the app with the following command:

node index. js

Then load http://localhost:3000/ in a web browser to see the result.

7.8.5 Image Uploads

Next, we will add an endpoint to receive image uploads.

var express = require('express');
var fileupload = require('express—fileupload');

(continues on next page)

40 Chapter 7. Developing Applications

paradrop Documentation, Release 0.13.2

(continued from previous page)

var app = express();

// Use PARADROP_DATA_DIR when running on Paradrop and /tmp for testing.
var storage_dir = process.env.PARADROP_DATA_DIR || '/tmp';

app.use (fileupload());
app.use (express.static(storage_dir));
app.set ('view engine', 'ejs');

app.post ('/create', function(req, res) {
var img = req.files.img;
if (img) |
img.mv (storage_dir + '/' + img.name);

res.redirect ('/"');
)i

app.get ('/', function (req, res) {
res.render ('home');

)i

app.listen (3000, function() {
console.log('Listening on port 3000.");

)i

Create a new file in the views directory called home.ejs with the following contents:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>ParaDrop Sticky Board</title>
</head>
<body>
<hl>ParaDrop Sticky Board</hl>
<h2>Create a Note</h2>
<p>Upload an image file to create a note for others to see.</p>
<form action="/create" method="POST" encType="multipart/form-data">
<input type="file" name="img" />
<input type="submit" value="Create" />
</form>
</body>
</html>

Right now it is just plain HTML. In the next section we will make use of templating to add images to the sticky board.

Run the app again and load http://localhost :3000/. Try using the form to upload an image. You should then
be able to find your image by loading http://localhost:3000/<filename>.

7.8.6 Displaying Notes

The last thing the app needs to be able to do is display all of the notes that people have posted. First, add some logic
to index.js to keep track of the most recent image uploads:

7.8. Tutorial: Sticky Board 41

paradrop Documentation, Release 0.13.2

var express = require('express');
var fileupload = require('express—-fileupload');

var app = express();

// Use PARADROP_DATA_DIR when running on Paradrop and /tmp for testing.
var storage_dir = process.env.PARADROP_DATA_DIR || '/tmp';

// Maximum number of notes to display.

var max_visible_notes = process.env.MAX_VISIBLE_NOTES || 16;
app.locals.notes = [];
for (var i = 0; 1 < max_visible_notes; i++) {

if (1 % 2 == 0) {

addNote ('http://pages.cs.wisc.edu/~hartung/paradrop/paradrop.png') ;
} else {
addNote ('http://pages.cs.wisc.edu/~hartung/paradrop/paradrop_inverted.png') ;

function addNote (img) {
app.locals.notes.push ({
img: img,

)i

if (app.locals.notes.length > max_visible_notes) {
app.locals.notes = app.locals.notes.slice(-max_visible_notes);

app.use (fileupload());
app.use (express.static(storage_dir));
app.set ('view engine', 'ejs');

app.post ('/create', function(req, res) {
var img = reqg.files.img;
if (img) |
img.mv (storage_dir + '/' + img.name);
addNote (img.name) ;

res.redirect ('/");

)i

app.get ('/', function (req, res) {
res.render ('home');

)

app.listen (3000, function() {
console.log('Listening on port 3000."');
}) i

The paradrop.png and paradrop_inverted.png are just used as fillers until people post other images. Feel free to use
different images.

Also, update home.ejs:

42 Chapter 7. Developing Applications

paradrop Documentation, Release 0.13.2

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>ParaDrop Sticky Board</title>

<style>
div.holder {
float: left;
min-width: 240px;
width: 24%;
padding: 5px 5px;

div.separator {
clear: both;
}
</style>
</head>
<body>
<hl>ParaDrop Sticky Board</hl>

<div>
<% for(var i = 0; i<notes.length; i++) {%>
<div class="holder">
<img src="<%= notes[i].img %>" width="100%">
</div>
<% } %>
</div>

<div class="separator"></div>

<h2>Create a Note</h2>

<p>Upload an image file to create a note for others to see.</p>

<form action="/create" method="POST" encType="multipart/form-data">
<input type="file" name="img" />
<input type="submit" value="Create" />

</form>

</body>
</html>

We use some Embedded JS code to loop over the array of notes stored in app . locals.notes and generate an img
element for each one with the appropriate filename.

Now when you run the app and load http://localhost :3000/ you should see the filler images. Try using the
form to upload an image, and it should appear on the board.

7.8.7 Preparing the Chute

Create a file called paradrop.yaml with the following contents:

name: sticky-board
description: Run a local bulletin board where guests can post images.
version: 1

services:

(continues on next page)

7.8. Tutorial: Sticky Board 43

paradrop Documentation, Release 0.13.2

(continued from previous page)

main:
type: light
use: node
command: node index.js

web:
service: main
port: 3000

This file tells ParaDrop a few things about how to run your code on a ParaDrop gateway.

Finally, add all of your new files to the git repository:

git add index.js package.json paradrop.yaml views/home.ejs
git commit -m "Created sticky board from tutorial"

Create a new repository on github.com and follow their instructions to push your code to github.

7.8.8 Registering the Chute with ParaDrop

Log on to paradrop.org and go to the Chute Store tab. Click “Create Chute” and give your chute a name and description.
You may need to be creative with the name because the chute store requires unique names. Then click “Submit”.

Next, click “Create Version”. For this tutorial, there are only two important fields to fill out on this form. First, check
the box to “enable web service” and enter the number 3000 because that is the port we chose in index.js. Second,
select “Download from URL” for Project source and enter the github URL for your project. Then click “Submit”.

Congratulations! You have made a ParaDrop chute. If you have a ParaDrop router, you should now be able to install
the chute on your router. If not, you can follow the Getting Started guide to set up a VM running ParaDrop.

44 Chapter 7. Developing Applications

CHAPTER 8

Frequently Asked Questions

Please check here for issues or questions that commonly arise.

8.1 Issues with the hardware or operating system

8.1.1 Issue 1: Docker fails to start after a reboot

This can happen if either the docker.pid file or the docker-containerd.pid file was not properly cleaned up on system
reboot, which causes the Docker daemon to conclude that it is already running.

To fix this, remove the pid file on the router and reboot.

sudo rm /var/snap/docker/current/run/docker.pid
sudo rm /var/snap/docker/current/run/docker/libcontainerd/docker-containerd.pid
sudo reboot

Occasionally Docker will crash and not restart properly even after a reboot. We find that disabling and re-enabling the
service helps in such cases.

sudo snap disable docker
sudo snap enable docker

8.1.2 Issue 2: WiFi devices are not detected after a reboot

Occasionally, when routers start up the WiFi devices are not detected properly. When this happens the command iw
dev will display nothing instead of the expected devices. This is usually remedied by rebooting. A global setting to
reboot the router if WiFi devices are missing is available on the router settings page.

45

paradrop Documentation, Release 0.13.2

46 Chapter 8. Frequently Asked Questions

CHAPTER 9

How to Contribute

This section focuses on the ParaDrop Daemon. This is the set of daemons and tools required to allow the Paradrop
platform to function on virtual machines and real hardware. ParaDrop is an open source project. The source code of
the ParaDrop daemon is available at github. Issue reports and pull requests are welcomed.

9.1 ParaDrop daemon development

ParaDrop repository includes a set of tools to make development as easy as possible.

Currently this system takes the form of a bash script that automates installation and execution. This page outlines the
steps required to manually install the dependencies, build the package and install the package into hardware/VMs.

We recommend using Ubuntu 16.04 LTS as the development environment for this version of ParaDrop because we use
snapcraft to package and distribute the ParaDrop daemon.

You will only need to follow these instructions if you will be making changes to the ParaDrop daemon. Otherwise,
you can use our pre-built ParaDrop snap or disk image from ParaDrop release.

9.1.1 Building ParaDrop daemon

pdbuild.sh is the script we work with during the development. It provides following commands:
e ./pdbuild.sh setup installs development dependencies.

e ./pdbuild.sh run executes the ParaDrop daemon locally in the development machine. It is useful for
debugging.

e ./pdbuild.sh build builds the snap package. Check snapcraft documentation for detailed information
about snap packages and snapcraft.

e ./pdbuild.sh image builds the ubuntu core image that we can flash into SD card or SSD module of a
ParaDrop router. It pre-installs the required snaps for us automatically, e.g. docker.

47

https://github.com/ParadropLabs/Paradrop
https://snapcraft.io/
https://paradrop.org/release/
https://snapcraft.io/docs/

paradrop Documentation, Release 0.13.2

9.1.2 Installing ParaDrop into hardware/VMs

After the ParaDrop daemon snap is ready (paradrop-daemon_<version>_amd64.snap), we can install it on a ParaDrop
router. Check Hardware Support for information about preparing a ParaDrop router.

Copy the paradrop snap to the router with ParaDrop image installed:

’scp paradrop-daemon-<version>_amd64.snap paradropl@<router ip>:

Then we can log in to a ParaDrop router:

’ssh paradrop@<router ip> ‘

Install the dependent snaps in a ParaDrop router:

’snap install docker ‘

Install the newly created ParaDrop daemon snap package:

’snap install --devmode paradrop-daemon—-<version>_amd64.snap

9.1.3 Checking logs of ParaDrop daemon

After install the ParaDrop daemon, we can use ‘pdlog’ to check the log of ParaDrop daemon on the ParaDrop router:

paradrop-daemon.pdlog —f

9.1.4 Building ParaDrop tools

We have published the ParaDrop tools snap in the Ubuntu Snap Store. On the development machine, we can install it
with below command:

’snap install paradrop-tools ‘

Get the manual of ParaDrop tools:

’paradrop—tools.pdtools —-~help ‘

More detailed information about ParaDrop tools can be find in Developing Applications. The git repository of
ParaDrop includes the source code of ParaDrop tools. Developers can build the latest version of ParaDrop tools
by running below command in the folder ‘tools’:

snapcraft

9.2 Documentation and tests

Documentation is handled by sphinx and readthedocs.

Testing is a joint effort between nosetests, travis-ci, and coveralls.

48 Chapter 9. How to Contribute

http://sphinx-doc.org/
https://nose.readthedocs.org/en/latest/

paradrop Documentation, Release 0.13.2

9.2.1 Documentation

Sphinx reads files in reStructuredText and builds a set of HTML pages. Every time a new commit is pushed to github,
readthedocs automatically updates documentation.

Additionally, sphinx knows all about python! The directives automodule, autoclass, autofunction and
more instruct sphinx to inspect the code located in paradrop/daemon/paradrop/ and build documentation
from the docstrings within.

For example, the directive . . automodule:: paradrop.backend will build all the documentation for the
given package. See Docstring Conventions for details.

All docstring documentation is rebuilt on every commit (unless there’s a bug in the code.) Sphinx does not, however,
know about structural changes in code! To alert sphinx of these changes, use the aut odoc feature:

sphinx-apidoc —-f -o docs/paradrop paradrop/daemon/paradrop/

This scans packages in the paradrop/daemon/paradrop directory and creates .rst files in docs/paradrop.

To create the documentation locally, run:

cd docs
make html
python -m SimpleHTTPServer 9999

Open your web browser of choice and point it to http://localhost:9999/_build/html/index.html.

9.2.2 Testing

As mentioned above, all testing is automatically run by travis-ci, a continuous integration service.

To manually run tests, install nosetest:

’pip install nose

Install the required packages:

’pip install -r docs/requirements.txt

Run all tests:

’nosetests

How does nose detect tests? All tests live in the tests/ directory. Nose adheres to a simple principle: anything
marked with test in its name is most likely a test. When writing tests, make sure all functions begin with test.

Coverage analysis detects how much of the code is used by a test suite. If the result of the coverage is less than 100%,
someone slacked. Install coveralls:

’pip install coveralls

Run tests with coverage analysis:

’nosetests ——with-coverage —--cover-package=paradrop

9.2. Documentation and tests 49

http://sphinx-doc.org/rest.html
https://www.python.org/dev/peps/pep-0257/
http://localhost:9999/_build/html/index.html

paradrop Documentation, Release 0.13.2

50 Chapter 9. How to Contribute

cHAaPTER 10

Host API| Reference

10.1 Host Configuration

The host configuration is a YAML file that resides on the ParaDrop device and controls many aspects of system
functioning, particularly network and wireless device configuration. The host configuration may also appear in JSON
format when manipulating it through the Local HTTP API or through the cloud controller. This page describes the
structure and interpretation of values in the host configuration.

10.1.1 Host Configuration Object

ParaDrop host configuration

type | object
properties
* firewall Firewall settings that apply to all network interfaces.
type | object
properties
e defaults Refer to: firewall defaults object.
host-config-firewall-defaults-schema
e lan Configuration for LAN interfaces (wired and wireless).

type | object
properties
e dhcp Refer to: dhcp object
host-config-dhcp-schema
e firewall Firewall settings for the LAN interfaces.
type | object
properties
¢ defaults Refer to: firewall defaults object.
host-config-firewall-defaults-schema
* forwarding Settings for packet forwarding.
type | object

Continued on next page

51

paradrop Documentation, Release 0.13.2

Table 1 — continued from previous page

¢ interfaces

List of wired interfaces to include in the LAN bridge, e.g. ethl.

type | array
items
type string
* ipaddr IP address to use on the LAN bridge.
type | string
* netmask Network mask for LAN.
type | string
* proto Method for setting interface IP address. ‘auto’ will choose a subnet

that avoids conflict with the WAN interface.

* system

type string
enum auto, static
Configure Paradrop system behaviors.
type | object
properties
* autoUpdate Enable automatically updating system software packages.
type | boolean
. The IP network size to assign to each chute.
chutePrefixSize| type integer
maximum 32
minimum 0

The IP range available for chutes in CIDR notation or ‘auto’. ‘auto’

chuteSubnetPool will choose a subnet that avoids conflict with the WAN interface.
type | string
. Behavior if expected wireless devices are missing on boot.
onMissingWiFi| type string
enum ignore, reboot, warn
* telemetry Configure telemetry function for collecting device measurements.
type | object
properties
e enabled Enable sending device measurements to cloud controller.
type | boolean
e interval Reporting interval (in seconds).
type integer
minimum 1
* vlan- Configure handling of VLAN tags on wired interfaces.
interfaces type | array
* wan Configuration for WAN interface.
type | object
properties
* firewall Firewall settings for the WAN interface.

type | object
properties
¢ defaults \ Refer to firewall defaults object.

\ host-config-firewall-defaults-schema

¢ interface

Name of interface to use for WAN.

type | string

e proto Method of acquiring interface IP address.
type string
enum dhcp

Continued on next page

52

Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

Table 1 — continued from previous page

o wifi List of physical Wi-Fi devices and their configuration.
type | array
items
host-config-wifi-device-schema
o wifi- List of virtual Wi-Fi interfaces and their configuration.
interfaces type \ array
items
host-config-wifi-interface-schema
e zerotier Configure ZeroTier service, which enables VPN-like functionality.

type | object
properties
* enabled Enable the ZeroTier service.
type | boolean
* networks List of ZeroTier networks to join, using their string IDs.
type | array
items
type string
uniqueltems True

10.1.2 DHCP Object

ParaDrop host configuration - dhcp object

type \ object
properties
* Jeasetime Duration of client leases, e.g. 2h
type | string
* limit Size of address range beginning at start value.
type integer
minimum 1
* start Starting offset for address assignment.
type integer
minimum 0

10.1. Host Configuration

53

paradrop Documentation, Release 0.13.2

10.1.3 Firewall Defaults Object

ParaDrop host configuration - firewall defaults object
type | object
properties
e conntrack
* forward type string
enum ACCEPT, REJECT, DROP
* input type string
enum ACCEPT, REJECT, DROP
* masq
* masq_src List of source addresses or subnets to which SNAT should be applied.
type | array
items
. type string
uniqueltems True
* output type string
enum ACCEPT, REJECT, DROP

10.1.4 Wi-Fi Device Object

Objects in the wifi array define physical device settings such as the channel and transmit power. These settings affect
all interfaces in the “wifi-interfaces” array that use the corresponding device.

ParaDrop uses a deterministic system for identifying Wi-Fi devices, so that settings are applied to the same device on
startup as long as there have been no hardware changes. ParaDrop numbers PCI and USB devices separately starting
from zero, so a ParaDrop host with two PCI Wi-Fi cards and one USB card will have device IDs pci-wifi-0, pci-wifi-1,
and usb-wifi-0.

The spectrum band is determined by the Aiwmode setting and the channel setting. They must be compatible. For 2.4
GHz channels (1-13), set hiwmode to 11g. For 5 GHz channels (36-165), set hwmode to 11a.

Higher data rates and channel sizes (802.11n and 802.11ac) are configured with the htmode setting. For a 40 MHz
channel width in 802.11n, set htmode=HT40 or htmode=HT40-. Plus means add the next higher channel, and minus
means add the lower channel. For example, setting channel=36 and htmode=HT40+ results in using channels 36 and
40 as a 40 MHz channel.

If the hardware supports it, you can enable short guard interval for slightly higher data rates. There are separate settings
for each channel width: short_gi_20, short_gi_40, and short_gi_80.

54 Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

Defines a physical Wi-Fi device and its configuration.

type \ object
properties

* channel Wi-Fi channel number.
type integer
maximum 165
minimum 1

* htmode Enable 802.11n or 802.11ac modes.
type string
enum None, HT20, HT40+, HT40-,

VHT20, VHT40, VHT80

* hwmode Basic operating mode (11b for old hardware, 11g for 2.4 GHz, 11a for 5
GHz).
type string
enum 11b, 11g, 11a

e id Physical identifier, e.g. pci-wifi-1 or usb-wifi-0.
type | string

* rx_stbc Indicates support for receiving frames using STBC.
type integer
maximum 1
minimum 0

e short_gi_20

Enable short guard interval (higher data rates) in 20 MHz channels, must be
supported by device.

type | boolean
* short_gi_40 Enable short guard interval (higher data rates) in 40 MHz channel, must be
supported by device.
type | boolean
* short_gi_80 Enable short guard interval (higher data rates) in 80 MHz channel, must be
supported by device.
type | boolean
* tx_stbc Indicates support for transmitting frames using STBC.
type integer
maximum 1
minimum 0

10.1.5 Wi-Fi Interface Object

Objects in the wifi-interfaces array configure virtual interfaces. Each virtual interface has an underlying physical
device, but there can be multiple interfaces per device up to a limit determined by the hardware. Virtual interfaces can
be configured as APs or in other operating modes (with limited support).

The encryption setting can take a number of different values. The most common options are: “none” for an open access
point, “psk2” for WPA2 Personal (PSK), and “wpa2” for WPA2 Enterprise. WPA2 Enterprise requires additional
configuration to interact with an external RADIUS server.

10.1. Host Configuration

55

paradrop Documentation, Release 0.13.2

ParaDrop host configuration - Wi-Fi interface section

type

object

properties

¢ device

Physical device used by this interface, must match a device id in the wifi
section.

type | string
* encryption Type of wireless network security to use, e.g. none, psk2, wpa2 (Enter-
prise).
type | string
* mode Operating mode for the interface.
type string
enum airshark, ap, managed, monitor
* network Network name the interface should be attached to, typically lan for ap mode
interfaces.
type | string
* ssid ESSID for ap and managed mode interfaces.
type | string

10.2 Chute Configuration

The chute configuration is a YAML file (paradrop.yaml) that a chute developer creates to configure how resources
from the host operating system should be allocated to the chute. The chute configuration may also appear in JSON
format, particularly when manipulating it through the Local HTTP API or through the cloud API. This page describes
the structure and interpretation of values in the chute configuration.

10.2.1 Chute Specification

type | object
properties
* name Name of the chute.
type | string
. Description of the chute to be shown to users.
descriptiprtype | string
* version | Version of the chute.
anyOf type string
type number
. Services to be installed with the chute.
services | type \ object
patternProperties
Service Specification
* W+
* web type object
properties

Continued on next page

56

Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

Table 2 — continued from previous page

 service | Name of chute service which provides the web service.
type | string
* port Listening port inside the chute.
type integer
maximum 65536
minimum 1
additionalPropertiadse
additionalProperffatse
definitions
. Interface Specification
interface| type | object
properties
* type Network interface type.
type string
enum monitor, vlan, wifi-ap
e dhep type object
properties
. Duration of client leases, e.g. 2h.
leasetime¢ type string
pattern d+[dhms]
e limit Size of address range beginning at start value.
type integer
minimum 1
* start Starting offset for address assignment.
type integer
minimum 3
additionalProperfiatse
* dns List of DNS servers to advertise to connected clients.
type | array
items
type string
. type object
wireless | properties
* ssid ESSID to broadcast.
type string
maxLength 32
* key Wireless network password.
type string
minLength 8
* nasid NAS identifier for RADIUS.
type | string
. RADIUS accounting server.
acct_serverype | string
. RADIUS accounting secret.
acct_secretype | string
. RADIUS accounting update interval (seconds).
acct_interwaipe integer
minimum 1
e hidden | Disable broadcasting the ESSID in beacons.
type | boolean

Continued on next page

10.2. Chute Configuration

57

paradrop Documentation, Release 0.13.2

Table 2 — continued from previous page

e isolate | Disable forwarding traffic between connected clients.
type | boolean
. Maximum number of associated clients.
maxassog type integer
minimum 0
additionalProperfiatse
. type object
requiremeiptoperties
. Required operating mode (11b for old hardware, 11g for 2.4
hwmode| GHz, 11a for 5 Ghz).
type string
enum 11b, 11g, 11a
. Required IP network in slash notation.
ipv4_netwoyke string
pattern Ad+.d+.d+.d+/d+
additionalProperftatse
. Bridge to another network using ARP proxying (experimental).
13bridge | type | string
* vlan-id | VLAN tag for traffic to and from the interface.
type integer
maximum 4094
minimum 1

additionalPropertiadse

e service

Service Specification

type | object
properties
* type Type of chute service.
type string
enum light, normal, image
* source | Source directory for this service.
type | string
e image | Image specification for services that pull a Docker image.
type string
. anyOf type string
commangd .
9 type array
items
type string
* dns List of DNS servers to be used within the container.
type | array
items
type string
. Environment variables.
environnjentpe | object
. Network interfaces to be connected.
interfaces type | object
patternProperties

Continued on next page

58

Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

Table 2 — continued from previous page

Interface Specification
w{l,16}
. type object
requests | properties
* as-root | Run service as privileged user.
type | boolean
* port- Port bindings from host to service container.
bindings| type | array
items
1 type | object
properties
. External (host) port number.
external | type integer
maximum 65536
minimum 1
. Internal (container) port num-
internal | ber.
type integer
maximum 65536
minimum 1
additionalPropertiatse
additionalPropertiatse
additionalPropertiatse

10.2.2 Chute Service Object

Chutes consist of one or more services, which are long-running processes that implement the functionality of the chute.
Services may be built from code in the chute project, from a Dockerfile, or pulled as images from the public Docker

Hub.

Service Specification

type | object
properties
* type Type of chute service.
type string
enum light, normal, image
* source Source directory for this service.
type | string
* image Image specification for services that pull a Docker image.
type string
e command | anyOf type string
‘ type array
items

Continued on next page

10.2. Chute Configuration

59

paradrop Documentation, Release 0.13.2

Table 3 — continued from previous page

type string
* dns List of DNS servers to be used within the container.
type | array
items
type string
. Environment variables.
environment type | object
* interfaces | Network interfaces to be connected.
type | object
patternProperties
Interface Specification
e w{l,16}
* requests type object
properties
* as-root Run service as privileged user.
type | boolean
* port- Port bindings from host to service container.
bindings | type | array
items
s type | object
properties
¢ external External (host) port number.
type integer
maximum 65536
minimum 1
e internal Internal (container) port number.
type integer
maximum 65536
minimum 1
additionalPropertieFalse
additionalPropertieFalse
additionalPropertieFalse

10.2.3 Chute Interface Object

Chutes may have one or more network interfaces. All chutes are configured with a default eth0 interface that pro-
vides WAN connectivity. Chutes may request additional network interfaces of various types by defining them in the
interfaces object. interfaces is a dictionary, where the key should be the desired interface name inside your chute,
e.g. wlan0. The same key is used to reference the interface in certain API endpoints such as /api/v1l/chutes/
(chute) /networks/ (network).

Interface Specification

type | object
properties

Continued on next page

60 Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

Table 4 — continued

from previous page

* type Network interface type.
type string
enum monitor, vlan, wifi-ap
* dhep type object
properties
* leasetime Duration of client leases, e.g. 2h.
type string
pattern d+[dhms]
* limit Size of address range beginning at start value.
type integer
minimum 1
* start Starting offset for address assignment.
type integer
minimum 3
additionalProperties False
* dns List of DNS servers to advertise to connected clients.
type | array
items
type string
* wireless type object
properties
* ssid ESSID to broadcast.
type string
maxLength 32
* key Wireless network password.
type string
minLength 8
* nasid NAS identifier for RADIUS.
type | string
e acct_server RADIUS accounting server.
type | string
* acct_secret RADIUS accounting secret.
type | string
* acct_interval RADIUS accounting update interval (seconds).
type integer
minimum 1
* hidden Disable broadcasting the ESSID in beacons.
type \ boolean
* isolate Disable forwarding traffic between connected clients.
type | boolean
* maxassoc Maximum number of associated clients.
type integer
minimum 0
additionalProperties False
* requirements type object
properties
* hwmode Required operating mode (11b for old hardware, 11g for

2.4 GHz, 11a for 5 Ghz).

type string

enum 11b, 11g, 11a

Continued on next page

10.2. Chute Configuration

61

paradrop Documentation, Release 0.13.2

Table 4 — continued from previous page

* ipv4_network Required IP network in slash notation.
type | string
pattern | Ad+.d+.d+.d+/d+

additionalProperties False

* 13bridge Bridge to another network using ARP proxying (experimental).
type | string

* vlan-id VLAN tag for traffic to and from the interface.
type integer
maximum 4094
minimum 1

additionalProperties False

WiFi AP Configuration

A WiFi AP interface is created by setting type=wifi-ap. There are many options for configuring the WiFi AP available
through the wireless section of the interface object.

Monitor-mode Interface Configuration (Experimental)

A monitor-mode interface enables a chute to observe all detected WiFi traffic with RadioTap headers. A monitor-mode
interface is created by setting rype=wifi-monitor.

Monitor-mode interfaces are disallowed by default but can be enabled if you have administrative access to a node. This
is because monitor-mode interfaces are potentially dangerous. They enable malicious chutes to record network traffic,
and furthermore, the feature itself is experimental. There may be issues with kernel drivers or our implementation that
cause system instability.

If you understand the risks and wish to enable monitor-mode interfaces, connect to your node using SSH and run the
following command.:

snap set paradrop-daemon base.allow-monitor-mode=true

VLAN Interface Configuration
A VLAN interface allows tagged traffic on the physical Ethernet ports of the device to be received by the chute. The

interface must be configured with a VLAN ID. Incoming traffic with that VLAN tag will be untagged and forwarded
to the chute interface. Likewise, traffic leaving the chute interface will be tagged and sent on one the physical ports.

10.2.4 Example

The following example chute configuration sets up a WiFi access point and a web server running on port 5000. It also
shows how to install and connect a database from a public image.

name: seccam
description: A Paradrop chute that performs motion detection using a simple WiFi |
—camera.

version: 1

services:
main:
type: light

(continues on next page)

62 Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

(continued from previous page)

source:
image: python2
command: python —-u seccam.py

environment:
IMAGE_INTERVAL: 2.0
MOTION_THRESHOLD: 40.0
SECCAM_MODE: detect

interfaces:
wlanO:
type: wifi-ap

dhcp:
leasetime: 12h
limit: 250
start: 4

wireless:
ssid: seccaméd?2
key: paradropseccam
hidden: false
isolate: true

requirements:
hwmode: 1llg

requests:
as—-root: true
port-bindings:
- external: 81
internal: 81

db:
type: image
image: mongo:3.0

web:
service: main
port: 5000

10.2.5 Experimental Features

ParaDrop is under heavy development. Features marked as experimental may be incomplete or buggy. Please contact
us if you need help with any of these features.

10.3 Chute Management

Install and manage chutes on the host.
Endpoints for these functions can be found under /api/v1/chutes.

GET /api/vl/chutes/
List installed chutes.

10.3. Chute Management 63

paradrop Documentation, Release 0.13.2

Example request:

GET /api/vl/chutes/

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"environment": {},
"name": "hello-world",
"allocation": {

"cpu_shares": 1024,
"prioritize_traffic": false
br

"state": "running",
"version": "x1511808778",
"resources": null

GET /api/vl/chutes/ (chute) /networks/

network/stations/mac Get detailed information about a connected station.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/stations/5c:59:48:7d:b9%:e6

Example response:

HTTP/1.1 200 OK

Content-Type: application/json

{
"rx packets": "230",
"tdls_peer": "no",
"authenticated": "yes",
"rx_bytes": "12511",
"tx_bitrate": "1.0 MBit/s",
"tx_retries": "O",
"signal": "-45 [-49, -48] dBm",
"authorized": "yes",
"rx bitrate": "65.0 MBit/s MCS 7",
"mfp": "no",
"tx_failed": "O",
"inactive_time": "4688 ms",
"mac_addr": "5c¢:59:48:7d:b9%:e06",
"tx_bytes": "34176",
"wmm_wme": "yes",
"preamble": "short",
"tx_packets": "838",
"signal_avg": "-44 [-48, -47] dBm"

}

GET /api/vl/chutes/ (chute) /networks/

network /hostapd_status Get low-level status information from the access point.

64

Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/hostapd_status

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"olbc_ht": "0O",
"cac_time_left_seconds": "N/A",
"num_sta_ no_short_slot_time": "O0",
"olbec": "1,

"num_sta non_erp": "0",
"ht_op_mode": "Ox4",

"state": "ENABLED",
"num_sta_ht40_intolerant": "0",
"channel": "11",

"bssid[0]": "02:00:08:24:03:dd",
"ieee80211ln": "1",
"cac_time_seconds": "0",
"num_sta[O0]": "1",
"ieee8021lac": "O",

"phy": "phyO",
"num_sta_ht_no_gf": "1",

"freq": "2462",

"num_sta _ht_20_mhz": "1",
"num_sta_no_short_preamble": "0",
"secondary_ channel": "0",
"ssid[0]": "Free WiFi",
"num_sta_no_ht": "0",

"bss[0]": "vwlanT7elb"

GET /api/vl/chutes/ (chute) /networks/

network/stations Get detailed information about connected wireless stations.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/stations

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"rx_packets": "230",

"tdls_peer": "no",
"authenticated": "yes",
"rx_bytes": "12511",

"tx_bitrate": "1.0 MBit/s",
"tx_retries": "O",

"signal": "-45 [-49, -48] dBm",
"authorized": "yes",

"rx_bitrate": "65.0 MBit/s MCS 7",

(continues on next page)

10.3. Chute Management

65

paradrop Documentation, Release 0.13.2

(continued from previous page)

"mfp": "no",

"tx_ failed": "O",

"inactive_time": "4688 ms",
"mac_addr": "5c¢:59:48:7d:b9%:e06",
"tx_bytes": "34176",

"wmm_wme": "yes",

"preamble": "short",

"tx_packets": "88",

"signal_avg": "-44 [-48, -47] dBm"

GET /api/vl/chutes/ (chute) /networks/

network/leases Get current list of DHCP leases for chute network.
Returns a list of DHCP lease records with the following fields:
expires lease expiration time (seconds since Unix epoch)

mac_addr device MAC address

ip_addr device IP address

hostname name that the device reported

client_id optional identifier supplied by device

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/leases

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"client_id": "01:5¢:59:48:7d:b9%:e6",
"expires": "1511816276",

"ip_addr": "192.168.128.64",
"mac_addr": "5c¢:59:48:7d:b9%:e06",
"hostname": "paradrops—-iPod"

GET /api/vl/chutes/ (chute) /networks/

network/ssid Get currently configured SSID for the chute network.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/ssid

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

Chapter 10

. Host API Reference

paradrop Documentation, Release 0.13.2

(continued from previous page)

"ssid": "Free WiFi",
"bssid": "02:00:08:24:03:dd"

PUT /api/vl/chutes/ (chute) /networks/
network/ssid Change the configured SSID for the chute network.

The change will not persist after a reboot. If a persistent change is desired, you should update the chute config-
uration instead.

Example request:

PUT /api/vl/chutes/captive-portal/networks/wifi/ssid
Content-Type: application/json

"ssid": "Best Free WiFi"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"message": "OK"

GET /api/vl/chutes/ (chute) /networks/
network Get information about a network configured for the chute.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"interface": "wlanO",
"type": "Y/\]ifi",
llnamell. "W:‘Lfi"

GET /api/vl/chutes/ (chute) /networks
Get list of networks configured for the chute.

Example request:

GET /api/vl/chutes/captive-portal/networks

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

10.3. Chute Management 67

paradrop Documentation, Release 0.13.2

(continued from previous page)

"interface": "wlanO",
lltypell : "Wifi",
"name": "wifi"

GET /api/vl/chutes/ (chute) /config
Get current chute configuration.

Example request:

GET /api/vl/chutes/captive-portal/config

Example response:

HTTP/1.1 200 OK
Content-Type: application/json
{
"net": {
"wifi": |
"dhcp": |
"lease": "1h",
"limit": 250,
"start": 3
}!
"intfName": "wlanO",
"options": {
"isolate": True
}I
"ssid": "Free WiFi",
"type": "wifi"
}
}
}

PUT /api/vl/chutes/ (chute) /config
Update the chute configuration and restart to apply changes.

Example request:

PUT /api/vl/chutes/captive-portal/config
Content-Type: application/json
{
"net": {
"wifi": |
"dhcp": {
"lease": "1h",
"limit": 250,
"start": 3
}V
"intfName": "wlanO",
"options": {

(continues on next page)

68

Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

(continued from previous page)

"isolate": True
b
"ssid": "Better Free WiFi",
"type": "wifi"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"change_id": 1

GET /api/vl/chutes/ (chute) /cache
Get chute cache contents.

The chute cache is a key-value store used during chute installation. It can be useful for debugging the Paradrop
platform.

GET /api/vl/chutes/ (chute)
Get information about an installed chute.

Example request:

GET /api/vl/chutes/hello-world

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"environment": {},

"name": "hello-world",

"allocation": {
"cpu_shares": 1024,

"prioritize_traffic": false
b

"state": "running",
"version": "x1511808778",
"resources": null

10.4 Device Configuration

This module exposes device configuration.
Endpoints for these functions can be found under /api/v1/config.

POST /api/vl/config/factoryReset
Initiate the factory reset process.

10.4. Device Configuration 69

paradrop Documentation, Release 0.13.2

PUT

GET

/api/vl/config/hostconfig
Replace the device’s host configuration.

Example request:

PUT /api/vl/config/hostconfig
Content-Type: application/json

"firewall": {
"defaults": {
"forward": "ACCEPT",
"input": "ACCEPT",
"output": "ACCEPT"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

change_id: 1

For a complete example, please see the Host Configuration section.

/api/vl1l/config/hostconfig
Get the device’s current host configuration.

Example request:

GET /api/vl/config/hostconfig

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"firewall": {
"defaults": {
"forward": "ACCEPT",
"input": "ACCEPT",
"output": "ACCEPT"

For a complete example, please see the Host Configuration section.

GET /api/vl/config/new-config

Generate a new node configuration based on the hardware.

Example request:

70

Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

GET /api/vl/config/new_config

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"firewall": {
"defaults": {
"forward": "ACCEPT",
"input": "ACCEPT",
"output": "ACCEPT"

For a complete example, please see the Host Configuration section.

POST /api/vl/config/provision

GET

GET

GET

PUT

GET

Provision the device with credentials from a cloud controller.

/api/vl/config/provision
Get the provision status of the device.

/api/vl/config/settings
Get current values of system settings.

These are the values from paradrop.base.settings. Settings are loaded at system initialization from the settings.ini
file and environment variables. They are intended to be read-only after initialization.

This endpoint returns the settings as a dictionary with lowercase field names.
Example: {
“portal_server_port”: 8080, ...

}

/api/vl/config/pdconf
Get configuration sections from pdconf.

This returns a list of configuration sections and whether they were successfully applied. This is intended for
debugging purposes.

/api/vl/config/pdconf
Trigger pdconf to reload UCI configuration files.

Trigger pdconf to reload UCI configuration files and return the status. This function is intended for low-level
debugging of the paradrop pdconf module.

/api/vl/config/pdid
Get the device’s current ParaDrop ID. This is the identifier assigned by the cloud controller.

Example request:

GET /api/vl/config/pdid

Example response:

10.4. Device Configuration 71

paradrop Documentation, Release 0.13.2

HTTP/1.1 200 OK
Content-Type: application/json

pdid: "5890elebab7e317e6c6e049f"

POST /api/vl/config/sshKeys/ (user)
Manage list of authorized keys for SSH access.

GET /api/vl/config/sshKeys/ (user)
Manage list of authorized keys for SSH access.

10.5 Device Information

Provide information of the router, e.g. board version, CPU information, memory size, disk size.
Endpoints for these functions can be found under /api/v1/info.

GET /api/vl/info/environment
Get environment variables.

Returns a dictionary containing the environment variables passed to the Paradrop daemon. This is useful for
development and debugging purposes (e.g. see how PATH is set on Paradrop when running in different contexts).

Example request:

GET /api/vl/info/environment

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"LANG": "C.UTF-8",

"SNAP_REVISION": "x73",

"SNAP_COMMON": "/var/snap/paradrop-daemon/common",

"XDG_RUNTIME_DIR": "/run/user/0/snap.paradrop-daemon",

"SNAP_USER_COMMON": "/root/snap/paradrop-daemon/common",

"SNAP_LIBRARY_PATH": "/var/lib/snapd/lib/gl:/var/lib/snapd/void",

"SNAP_NAME": "paradrop-daemon",

"PWD": "/var/snap/paradrop-daemon/x73",

"PATH": "/snap/paradrop—-daemon/x73/usr/sbin:/snap/paradrop—-daemon/x73/usr/bin:/
—snap/paradrop-daemon/x73/sbin:/snap/paradrop-daemon/x73/bin:/usr/local/sbin:/
—usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games",

"SNAP": "/snap/paradrop-daemon/x73",

"SNAP_DATA": "/var/snap/paradrop-daemon/x73",

"SNAP_VERSION": "0.9.2",

"SNAP_ARCH": "amd64",

"SNAP_USER_DATA": "/root/snap/paradrop-daemon/x73",

"TEMPDIR": "/tmp",

"HOME": "/root/snap/paradrop-daemon/x73",

"SNAP_REEXEC": "",

"LD_LIBRARY_PATH": "/var/lib/snapd/lib/gl:/var/lib/snapd/void:/snap/paradrop-—
—daemon/x73/usr/1ib/x86_64-1linux-gnu::/snap/paradrop-daemon/x73/1ib:/snap/
—paradrop-daemon/x73/usr/lib:/snap/paradrop-daemon/x73/1ib/x86_64-1linux—gnu:/

—snap/paradrop-daemon/x73/usr/1ib/x86_64-1inux—-gnu", (continues on next page)

72 Chapter 10. Host API Reference

paradrop Documentation, Release 0.13.2

(continued from previous page)

"TMPDIR": "/tmp"

GET /api/vl/info/telemetry
Get a telemetry report.

This contains information about resource utilization by chute and system totals. This endpoint returns the same
data that we periodically send to the controller if telemetry is enabled.

GET /api/vl/info/hardware
Get information about the hardware platform.

Example request:

GET /api/vl/info/hardware

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"wifi": [

{
"slot": "pci/0000:04:00.0",
"vendorId": "0Ox168c",
"macAddr": "04:f0:21:2f:b7:cl1",
"id": "pci-wifi-0",
"deviceId": "0x003c"

}I

{
"slot": "pci/0000:06:00.0",
"vendorId": "0Ox168c",
"macAddr": "04:f0:21:0f:78:28",
"id": "pci-wifi-1",
"deviceId": "0x002a"

}
1,
"memory": 2065195008,

"wvendor": "PC Engines",
"board": "APU 1.0",
"cpu": "x86_64"

GET /api/vl/info/software
Get information about the operating system.

Returns a dictionary containing information the BIOS version, OS version, kernel version, Paradrop version,
and system uptime.

Example request:

GET /api/vl/info/software

Example response:

10.5. Device Information 73

paradrop Documentation, Release 0.13.2

HTTP/1.1 200 OK
Content-Type: application/json

"biosVersion": "SageBios_PCEngines_APU-45",
"biosDate": "04/05/2014",

"uptime": 15351,

"kernelVersion": "Linux-4.4.0-10l-generic",
"pdVersion": "0.9.2",

"biosVendor": "coreboot",

"osVersion": "Ubuntu 4.4.0-101.124-generic 4.4.95"

GET /api/vl/info/features

Get features supported by the host.
This is a list of strings specifying features supported by the daemon.

Explanation of feature strings:

hostapd-control The daemon supports the hostapd control interface and provides a websocket channel for

accessing it.

Example request:

GET /api/vl/info/features

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"hostapd-control"

74

Chapter 10. Host API Reference

cHAPTER 11

pdtools CLI Reference

11.1 pdtools

Paradrop command line utility.

’pdtools [OPTIONS] COMMAND [ARGS]...

11.1.1 chute

Utilities for developing chutes.

These commands all operate on a chute project in the current working directory. Remember, that all chutes must have
a paradrop.yaml file in the top-level directory. You can create one interactively with the initialize command.

pdtools chute [OPTIONS] COMMAND [ARGS]...

add-wifi-ap

Add a WiFi AP to the chute configuration.

ESSID must be between 1 and 32 characters in length. Spaces are allowed if you enclose the argument in quotation

marks.

pdtools chute add-wifi-ap [OPTIONS] ESSID

Options

—-password <password>
Password for the network, must be at least 8 characters if specified.

75

paradrop Documentation, Release 0.13.2

——force
Overwrite an existing section in the configuration file.

Arguments

ESSID
Required argument

enable-web-service

Configure chute for providing a web service.

This command adds information to the paradrop.yaml file about a web server that runs as part of the chute. PORT
should be the port that the chute code listens on. Paradrop will forward external requests to this port. If the chute runs
multiple services, then SERVICE should be used to indicate the name of the service that runs the web server. For most
chutes, the default “main” will be appropriate.

pdtools chute enable-web-service [OPTIONS] PORT

Options

-s, ——service <service>
Name of service in chute which runs the web server.

Arguments

PORT
Required argument

export-configuration

Export chute configuration in JSON or YAML format.

The configuration format used by the cloud API is slightly different from the paradrop.yaml file. This command can
export a JSON object in a form suitable for installing the chute through the cloud API.

The config object will usually be used in an envelope like the following: {
“updateClass”: “CHUTE”, “updateType”: “update”, “config”: { config-object }
}

pdtools chute export-configuration [OPTIONS]

Options

—-f, ——format <format>
Format (json or yaml)

76 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

initialize

Interactively create a paradrop.yaml file.

pdtools chute initialize [OPTIONS]

Options

—--legacy
Create a single-service chute using older syntax.

set

Set a value in the paradrop.yaml file.

PATH must be a dot-separated path to a value in the paradrop.yaml file, such as “config.web.port”. VALUE will be
interpreted as a string, numeric, or boolean type as appropriate.

Changing values inside a list is not currently supported. For that you will need to edit the file directly.

Example: set config.web.port 80

pdtools chute set [OPTIONS] PATH VALUE

Arguments

PATH
Required argument

VALUE
Required argument

validate

Validate the paradrop.yaml file.

A note about versions: this command validates the chute configuration against the current rules for the installed version
of pdtools. If the chute is to be installed on a Paradrop node running a different version, then this command may not
be reliable for determining compatibility.

pdtools chute validate [OPTIONS]

11.1.2 cloud

Access services provided by a cloud controller.

By default the cloud controller is assumed to be paradrop.org. This can be configured through the environment variable
PDSERVER_URL.

pdtools cloud [OPTIONS] COMMAND [ARGS]...

11.1. pdtools 7

paradrop Documentation, Release 0.13.2

claim-node

Take ownership of a node by using a claim token.

TOKEN is a hard-to-guess string that the previous owner would have configured when setting the node’s status as
orphaned.

pdtools cloud claim-node [OPTIONS] TOKEN

Options

-n, —-name <name>
Name of the node

Arguments

TOKEN
Required argument

create-node

Create a new node to be tracked by the controller.

NAME must be unique among the nodes that you own and may only consist of lowercase letters, numbers, and
hyphens. It must also begin with a letter.

pdtools cloud create—-node [OPTIONS]| NAME

Options

——orphaned, ——-not-orphaned
Allow another user to claim the node.

—-—-claim <claim>
Claim token required to claim the node.

Arguments

NAME
Required argument

delete-node

Delete a node that is tracked by the controller.

NAME must be the name of a node that you own.

pdtools cloud delete—-node [OPTIONS] NAME

78 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

Arguments

NAME
Required argument

describe-node

Get detailed information about an existing node.

NAME must be the name of a node that you own.

pdtools cloud describe-node [OPTIONS] NAME

Arguments

NAME
Required argument

edit-node-description

Interactively edit the node description and save.
NAME must be the name of a node that you own.

Open the text editor specified by the EDITOR environment variable with the current node description. If you save and
exit, the changes will be applied to the node.

pdtools cloud edit-node-description [OPTIONS] NAME

Arguments

NAME
Required argument

group-add-node

Add a node to a group for other members to access.

GROUP must be the string ID of a group. NODE must be the name of a node that you control.

pdtools cloud group—-add-node [OPTIONS] GROUP NODE

Arguments

GROUP
Required argument

NODE
Required argument

11.1. pdtools 79

paradrop Documentation, Release 0.13.2

help

Show this message and exit.

pdtools cloud help [OPTIONS]

import-ssh-key

Add an authorized key from a public key file.

PATH must be a path to a public key file, which corresponds to a private key that SSH can use for authentication.

Typically, ssh-keygen will place the public key in “~/.ssh/id_rsa.pub”.

pdtools cloud import-ssh-key [OPTIONS]

Arguments

PATH
Required argument

list-groups

List groups that you belong to.

pdtools cloud list—-groups [OPTIONS]

list-nodes

List nodes that you own or have access to.

pdtools cloud list-nodes [OPTIONS]

login

Interactively login to your user account on the controller.

Authenticate with the controller using account credentials that you created either through the website or with the

register command. Typically, the username will be your email address.

pdtools cloud login [OPTIONS]

logout

Log out and remove stored credentials.

pdtools cloud logout [OPTIONS]

80

Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

register

Interactively create an account on the controller.

pdtools cloud register [OPTIONS]

rename-node

Change the name of a node.

NAME must be the name of a node that you control. NEW_NAME is the desired new name. It must adhere to the
same naming rules as for the create-node command, namely, it must begin with a letter and consist of only lowercase
letters, numbers, and hyphen.

pdtools cloud rename—-node [OPTIONS] NAME NEW_NAME

Arguments

NAME
Required argument

NEW_NAME
Required argument

11.1.3 device

(deprecated) Sub-tree for configuring a device.

These commands are deprecated. Please use the equivalent commands under pdtools node —help.

pdtools device [OPTIONS] ADDRESS COMMAND [ARGS]...

Arguments

ADDRESS
Required argument

audio

Control device audio properties.

pdtools device audio [OPTIONS] COMMAND [ARGS]...

info

Get audio server information.

pdtools device audio info [OPTIONS]

11.1. pdtools 81

paradrop Documentation, Release 0.13.2

load-module

Load a module.

pdtools device audio load-module [OPTIONS] NAME

Arguments

NAME
Required argument

modules

List loaded modules.

pdtools device audio modules [OPTIONS]

sink

Configure audio sink.

pdtools device audio sink [OPTIONS] SINK_NAME COMMAND [ARGS]...

Arguments

SINK_NAME
Required argument

volume

Set sink volume.

pdtools device audio sink volume [OPTIONS] [CHANNEL_VOLUME]...

Arguments

CHANNEL_VOLUME
Optional argument(s)

sinks

List audio sinks.

pdtools device audio sinks [OPTIONS]

82 Chapter 11

. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

source

Configure audio source.

pdtools device audio source [OPTIONS] SOURCE_NAME COMMAND [ARGS]...

Arguments

SOURCE_ NAME
Required argument

volume

Set source volume.

pdtools device audio source volume [OPTIONS] [CHANNEL_VOLUME]...

Arguments

CHANNEL_ VOLUME
Optional argument(s)

sources

List audio sources.

pdtools device audio sources [OPTIONS]

changes

List changes in the working queue.

pdtools device changes [OPTIONS]

chute

Sub-tree for configuring a chute.

pdtools device chute [OPTIONS] CHUTE COMMAND [ARGS]...

Arguments

CHUTE
Required argument

11.1. pdtools 83

paradrop Documentation, Release 0.13.2

cache

Get details from the chute installation.

pdtools device chute cache [OPTIONS]

config

Get the chute’s current configuration.

pdtools device chute config [OPTIONS]

delete

Uninstall the chute.

pdtools device chute delete [OPTIONS]

edit-environment

Interactively edit the chute environment vairables.

pdtools device chute edit-environment [OPTIONS]

info

Get information about the chute.

pdtools device chute info [OPTIONS]

logs

Watch log messages from a chute.

pdtools device chute logs [OPTIONS]

network

Sub-tree for accessing chute network.

pdtools device chute network [OPTIONS] NETWORK COMMAND [ARGS]...

Arguments

NETWORK
Required argument

84 Chapter 11

. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

station

Sub-tree for accessing network stations.

pdtools device chute network station [OPTIONS] STATION COMMAND [ARGS]...

Arguments

STATION
Required argument

delete

Kick a station off the network.

pdtools device chute network station delete [OPTIONS]

show

Show station information.

pdtools device chute network station show [OPTIONS]

stations

List stations connected to the network.

pdtools device chute network stations [OPTIONS]

networks

List the chute’s networks.

pdtools device chute networks [OPTIONS]

reconfigure

Reconfigure the chute without rebuilding.

pdtools device chute reconfigure [OPTIONS]

restart

Restart the chute.

11.1. pdtools

85

paradrop Documentation, Release 0.13.2

pdtools device chute restart [OPTIONS]

shell

Open a shell inside a chute.

This requires you to have enabled SSH access to the device and installed bash inside your chute.

pdtools device chute shell [OPTIONS]

start

Start the chute.

pdtools device chute start [OPTIONS]

stop

Stop the chute.

pdtools device chute stop [OPTIONS]

update

Update the chute from the working directory.

pdtools device chute update [OPTIONS]

chutes

View or create chutes on the router.

pdtools device chutes [OPTIONS] COMMAND [ARGS]...

create

Install a chute from the working directory.

pdtools device chutes create [OPTIONS]

list

List chutes installed on the router.

pdtools device chutes list [OPTIONS]

86 Chapter 11

. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

hostconfig

Sub-tree for the host configuration.

pdtools device hostconfig [OPTIONS] COMMAND [ARGS]...

change

Change one setting in the host configuration.

pdtools device hostconfig change [OPTIONS] OPTION VALUE

Arguments

OPTION
Required argument

VALUE
Required argument

edit

Interactively edit the host configuration.

pdtools device hostconfig edit [OPTIONS]

login

Log in using device-local credentials.

pdtools device login [OPTIONS]

logout

Log out by removing any stored access tokens.

pdtools device logout [OPTIONS]

password

Change the router admin password.

pdtools device password [OPTIONS]

11.1. pdtools 87

paradrop Documentation, Release 0.13.2

pdconf

Access the pdconf subsystem.

pdconf manages low-level configuration of the Paradrop device. These commands are implemented for debugging
purposes and are not intended for ordinary configuration purposes.

pdtools device pdconf [OPTIONS] COMMAND [ARGS]...

reload

Force pdconf to reload files.

pdtools device pdconf reload [OPTIONS]

show

Show status of pdconf subsystem.

pdtools device pdconf show [OPTIONS]

provision

Provision the router.

pdtools device provision [OPTIONS] ROUTER_ID ROUTER_PASSWORD

Options

——server <server>

——wamp <wamp>

Arguments

ROUTER_ID
Required argument

ROUTER_PASSWORD
Required argument

shapd

Access the snapd subsystem.

pdtools device snapd [OPTIONS] COMMAND [ARGS]...

88 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

connectall

Connect all interfaces.

pdtools device snapd connectall [OPTIONS]

createuser

Create user account.

pdtools device snapd createuser [OPTIONS] EMAIL

Arguments

EMAIL
Required argument

sshkeys

Sub-tree for accessing SSH authorized keys.

pdtools device sshkeys [OPTIONS] COMMAND [ARGS]...

Options

——user <user>

add

Add an authorized key from a file.

pdtools device sshkeys add [OPTIONS] PATH

Arguments

PATH
Required argument

list

List authorized keys.

pdtools device sshkeys list [OPTIONS]

11.1. pdtools

89

paradrop Documentation, Release 0.13.2

watch

Stream messages for a change in progress.

pdtools device watch [OPTIONS] CHANGE_ID

Arguments

CHANGE_ID
Required argument

11.1.4 discover

Discover Paradrop nodes on the network.

pdtools discover [OPTIONS]

11.1.5 group

(deprecated) Manage a user group.

These commands are deprecated. Please use the equivalent commands under pdtools cloud —help.

pdtools group [OPTIONS] GROUP_ID COMMAND [ARGS]...

Arguments

GROUP_1ID
Required argument

add-router

Add a router to the group.

pdtools group add-router [OPTIONS] ROUTER_ID

Arguments

ROUTER_ID
Required argument

11.1.6 help

Show this message and exit

pdtools help [OPTIONS]

920 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

11.1.7 list-groups

(deprecated) List user groups.

Please use pdtools cloud list-groups.

pdtools list-groups [OPTIONS]

11.1.8 node

Manage a Paradrop edge compute node.
These commands respect the following environment variables:

PDTOOLS_NODE_TARGET Default target node name or address.

pdtools node [OPTIONS] COMMAND [ARGS]...

Options

-t, ——-target <target>
Target node name or address

——with—-auth-cloud, --without-auth-cloud
Use a cloud token to authenticate with the node

——with—-auth-default, —--without-auth-default
Try the default credentials

——with—-auth-environment, --without—-auth-environment
Use a token from the environment variable PARADROP_API_TOKEN

—--with—-auth-prompt, —--without-auth-prompt
Prompt for a password

——with—-auth-saved, —--without-auth-saved
Use a saved token from a previous interaction

connect-snap-interfaces

Connect all interfaces for installed snaps.

pdtools node connect-snap-interfaces [OPTIONS]

create-user

Create local Linux user connected to Ubuntu store account.

EMAIL must be an email address which is registered as Ubuntu One account. The name of the local account that is
created will depend on the email address used. If in doubt, use “info@paradrop.io”, which will result in a user named
“paradrop” being created.

pdtools node create-user [OPTIONS] EMAIL

11.1. pdtools 91

mailto:info@paradrop.io

paradrop Documentation, Release 0.13.2

Arguments

EMAIL
Required argument

describe-audio

Display audio subsystem information.

Display information from the local PulseAudio server such as the default source and sink.

pdtools node describe—audio [OPTIONS]

describe-chute

Display information about a chute.

CHUTE must be the name of an installed chute.

pdtools node describe-chute [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

describe-chute-cache

Show internal details from a chute installation.
CHUTE must be the name of an installed chute.

This information is intended for Paradrop daemon developers for debugging purposes. The output is not expected to
remain stable between Paradrop versions.

pdtools node describe-chute-cache [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

describe-chute-configuration

Display configuration of a chute.
CHUTE must be the name of an installed chute.

This information corresponds to the “config” section in a chute’s paradrop.yaml file.

92 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

pdtools node describe-chute-configuration [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

describe-chute-network-client

Display information about a network client.

CHUTE must be the name of an installed chute. NETWORK must be the name of one of the chute’s configured
networks. Typically, this will be “wifi”. CLIENT identifies the network client, such as a MAC address.

pdtools node describe-chute-network-client [OPTIONS] CHUTE NETWORK CLIENT

Arguments

CHUTE
Required argument

NETWORK
Required argument

CLIENT
Required argument

describe-pdconf

Show status of the pdconf subsystem.

This information is intended for Paradrop daemon developers for debugging purposes.

pdtools node describe-pdconf [OPTIONS]

describe-provision

Show provisioning status of the node.

This shows whether the node is associated with a cloud controller, and if so, its identifier.

pdtools node describe-provision [OPTIONS]

describe-settings

Show node settings.

These are settings that paradrop reads during startup and configure certain behaviors. They can only be modified
through environment variables or the settings.ini file.

11.1. pdtools 93

paradrop Documentation, Release 0.13.2

pdtools node describe-settings [OPTIONS]

edit-chute-configuration

Interactively edit the chute configuration and restart it.
CHUTE must be the name of an installed chute.

Open the text editor specified by the EDITOR environment variable with the current chute configuration. If you save
and exit, the new configuration will be applied and the chute restarted.

pdtools node edit-chute-configuration [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

edit-chute-variables

Interactively edit a chute’s environment variables and restart it.
CHUTE must be the name of an installed chute.

Open the text editor specified by the EDITOR environment variable with the current chute environment variables. If
you save and exit, the new settings will be applied and the chute restarted.

pdtools node edit-chute-variables [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

edit-configuration

Interactively edit the node configuration and apply changes.

Open the text editor specified by the EDITOR environment variable with the current node configuration. If you save
and exit, the new configuration will be applied to the node.

pdtools node edit-configuration [OPTIONS]

export-configuration

Display the node configuration in the desired format.

pdtools node export-configuration [OPTIONS]

94 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

Options

—-f, ——format <format>
Format (json or yaml)

generate-configuration

Generate a new node configuration based on detected hardware.

The new configuration is not automatically applied. Rather, you can save it to file and use the import-configuration

command to apply it.

pdtools node generate-configuration [OPTIONS]

Options

—-f, ——format <format>
Format (json or yaml)

help

Show this message and exit.

pdtools node help [OPTIONS]

import-configuration

Import a node configuration from file and apply changes.

PATH must be a path to a node configuration file in YAML format.

pdtools node import-configuration [OPTIONS] PATH

Arguments

PATH
Required argument

import-ssh-key

Add an authorized key from a public key file.

PATH must be a path to a public key file, which corresponds to a private key that SSH can use for authentication.
Typically, ssh-keygen will place the public key in “~/.ssh/id_rsa.pub”.

pdtools node import-ssh-key [OPTIONS] PATH

11.1. pdtools

95

paradrop Documentation, Release 0.13.2

Options

-u, ——user <user>
Local username

Arguments

PATH
Required argument

install-chute

Install a chute from the working directory.

Install the files in the current directory as a chute on the node. The directory must contain a paradrop.yaml file. The

entire directory will be copied to the node for installation.

pdtools node install-chute [OPTIONS]

Options

—d, —-directory <directory>
Directory containing chute files

list-audio-modules

List modules loaded by the audio subsystem.

pdtools node list-audio-modules [OPTIONS]

list-audio-sinks

List audio sinks.

pdtools node list-audio-sinks [OPTIONS]

list-audio-sources

List audio sources.

pdtools node list-audio-sources [OPTIONS]

list-changes

List queued or in progress changes.

pdtools node list-changes [OPTIONS]

96 Chapter 11

. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

list-chute-network-clients

List clients connected to the chute’s network.

CHUTE must be the name of an installed chute. NETWORK must be the name of one of its configured networks.
Typically, this will be called “wifi”.

pdtools node list-chute-network-clients [OPTIONS] CHUTE NETWORK

Arguments

CHUTE
Required argument

NETWORK
Required argument

list-chute-networks

List networks configured by a chute.

CHUTE must be the name of an installed chute.

pdtools node list-chute-networks [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

list-chutes

List chutes installed on the node

pdtools node list-chutes [OPTIONS]

list-devices

List devices connected to the node.

pdtools node list-devices [OPTIONS]

list-snap-interfaces

List interfaces for snaps installed on the node.

pdtools node list-snap-interfaces [OPTIONS]

11.1. pdtools 97

paradrop Documentation, Release 0.13.2

list-ssh-keys

List keys authorized for SSH access to the node.

pdtools node list-ssh-keys [OPTIONS]

Options

-u, —--user <user>
Local username

load-audio-module

Load a module into the audio subsystem.

MODULE must be the name of a PulseAudio module such as “module-loopback”.

pdtools node load-audio-module [OPTIONS] MODULE

Arguments

MODULE
Required argument

login

Interactively log in using the local admin password.

Authenticate with the node using the local username and password. Typically, the username will be “paradrop”. The
password can be set with the set-password command.

pdtools node login [OPTIONS]

logout

Log out and remove stored credentials.

pdtools node logout [OPTIONS]

open-chute-shell

Open a shell inside the running chute.
CHUTE must be the name of a running chute.
This requires you to have enabled SSH access to the device and installed bash inside your chute.

Changes made to files inside the chute may not be persistent if the chute or the node is restarted. Only changes to files
in the “/data” directory will be preserved.

98 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

pdtools node open-chute-shell [OPTIONS] CHUTE

Options

—-s, ——service <service>
Service belonging to the chute

Arguments

CHUTE
Required argument

provision

Associate the node with a cloud controller.

ID and KEY are credentials that can be found when creating a node on the controller, either through the website or
through pdtools cloud create-node. They may also be referred to as the Router ID and the Router Password.

pdtools node provision [OPTIONS] ID KEY

Options

-c, ——controller <controller>
Cloud controller endpoint

-w, ——wamp <wamp>
WAMP endpoint

Arguments

ID
Required argument

KEY
Required argument

reboot

Reboot the node.

pdtools node reboot [OPTIONS]

remove-chute

Remove a chute from the node.

CHUTE must be the name of an installed chute.

11.1. pdtools 99

paradrop Documentation, Release 0.13.2

pdtools node remove—-chute [OPTIONS]| CHUTE

Arguments

CHUTE
Required argument

remove-chute-network-client

Remove a connected client from the chute’s network.

CHUTE must be the name of an installed chute. NETWORK must be the name of one of the chute’s configured
networks. Typically, this will be “wifi”. CLIENT identifies the network client, such as a MAC address.

Only implemented for wireless clients, this effectively kicks the client off the network.

pdtools node remove-chute-network-client [OPTIONS] CHUTE NETWORK CLIENT

Arguments

CHUTE
Required argument

NETWORK
Required argument

CLIENT
Required argument

restart-chute

Restart a chute.

CHUTE must be the name of an installed chute.

pdtools node restart-chute [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

set-configuration

Change a node configuration value and apply.

PATH must be a dot-separated path to a value in the node configuration, such as “system.onMissingWiFi”. VALUE
will be interpreted as a string, numeric, or boolean type as appropriate.

Changing values inside a list is not currently supported. Use edit-configuration instead.

100 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

pdtools node set-configuration [OPTIONS] PATH VALUE

Arguments

PATH
Required argument

VALUE
Required argument

set-password

Change the local admin password.

Set the password required by pdtools node login and the local web-based administration page.

pdtools node set-password [OPTIONS]

set-sink-volume

Configure audio sink volume.

SINK must be the name of a PulseAudio sink. VOLUME should be one (applied to all channels) or multiple (one for
each channel) floating point values between 0 and 1.

pdtools node set-sink-volume [OPTIONS] SINK [VOLUME]...

Arguments

SINK
Required argument

VOLUME
Optional argument(s)

set-source-volume

Configure audio source volume.

SOURCE must be the name of a PulseAudio source. VOLUME should be one (applied to all channels) or multiple
(one for each channel) floating point values between 0 and 1.

pdtools node set-source-volume [OPTIONS] SOURCE [VOLUME]...

Arguments

SOURCE
Required argument

VOLUME
Optional argument(s)

11.1. pdtools 101

paradrop Documentation, Release 0.13.2

shutdown

Shut down the node.

pdtools node shutdown [OPTIONS]

start-chute

Start a stopped chute.

CHUTE must be the name of a stopped chute.

pdtools node start—-chute [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

stop-chute

Stop a running chute.

CHUTE must be the name of a running chute.

pdtools node stop-chute [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

trigger-pdconf

Trigger pdconf to reload configuration.

This function is intended for Paradrop daemon developers for debugging purposes. Generally, you should use edit-
configuration and edit-chute-configuration for making configuration changes.

pdtools node trigger-pdconf [OPTIONS]

update-chute

Install a new version of the chute from the working directory.

Install the files in the current directory as a chute on the node. The directory must contain a paradrop.yaml file. The
entire directory will be copied to the node for installation.

pdtools node update-chute [OPTIONS]

102 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

Options

—d, —--directory <directory>
Directory containing chute files

watch-change-logs

Stream log messages from an in-progress change.

CHANGE_ID must be the ID of a queued or in-progress change as retrieved from the list-changes command.

pdtools node watch-change-logs [OPTIONS] CHANGE_ID

Arguments

CHANGE_ID
Required argument

watch-chute-logs

Stream log messages from a running chute.

CHUTE must be the name of a running chute.

pdtools node watch-chute-logs [OPTIONS] CHUTE

Arguments

CHUTE
Required argument

watch-logs

Stream log messages from the Paradrop daemon.

pdtools node watch—-logs [OPTIONS]

11.1.9 routers

(deprecated) Access router information on the controller.

These commands are deprecated. Please use the equivalent commands under pdrools cloud —help.

pdtools routers [OPTIONS] COMMAND [ARGS]...

11.1. pdtools 103

paradrop Documentation, Release 0.13.2

claim

Claim an existing router.

pdtools routers claim [OPTIONS] TOKEN

Arguments

TOKEN
Required argument

create

Create a new router.

pdtools routers create [OPTIONS] NAME

Options

——orphaned, ——not-orphaned

——claim <claim>

Arguments

NAME
Required argument

delete

Delete a router.

pdtools routers delete [OPTIONS] ROUTER_ID

Arguments

ROUTER_ID
Required argument

list

List routers.

pdtools routers list [OPTIONS]

104 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

11.1.10 store

Publish and install from the public chute store.

By default the cloud controller is assumed to be paradrop.org. This can be configured through the environment variable

PDSERVER_URL.

It is recommended that you log in with the cloud login command before using the store commands.

pdtools store [OPTIONS] COMMAND [ARGS]...

create-version

Push a new version of the chute to the store.

pdtools store create-version [OPTIONS]

describe-chute

Show detailed information about a chute in the store.

NAME must be the name of a chute in the store.

pdtools store describe-chute [OPTIONS] NAME

Arguments

NAME
Required argument

help

Show this message and exit.

pdtools store help [OPTIONS]

install-chute

Install a chute from the store.

CHUTE must be the name of a chute in the store. NODE must be the name of a node that you control.

pdtools store install-chute [OPTIONS] CHUTE NODE

Options

-f, ——follow
Follow chute updates.

-v, ——version <version>
Version of the chute to install.

11.1. pdtools

105

paradrop Documentation, Release 0.13.2

Arguments

CHUTE
Required argument

NODE
Required argument

list-chutes

List chutes in the store that you own or have access to.

pdtools store list-chutes [OPTIONS]

list-versions

List versions of a chute in the store.

NAME must be the name of a chute in the store.

pdtools store list-versions [OPTIONS] NAME

Arguments

NAME
Required argument

register

Register a chute with the store.

The chute information including name will be taken from the paradrop.yaml file in the current working directory. If
you receive an error, it may be that a chute with the same name is already registered.

pdtools store register [OPTIONS]

Options

—--public, —--not-public
List the chute publicly for other users to download.

watch-update-messages

Stream log messages from an in-progress update.

NODE must be the name or ID of a node that you control. UPDATE_ID must be the ID associated with an in-progress
update.

pdtools store watch-update-messages [OPTIONS] NODE_ID UPDATE_ID

106 Chapter 11. pdtools CLI Reference

paradrop Documentation, Release 0.13.2

Options

——interval <interval>
Interval to check for new messages

Arguments

NODE_1ID
Required argument

UPDATE_1ID
Required argument

11.1.11 wizard

Set up environment for development.

pdtools wizard [OPTIONS]

11.1. pdtools

107

paradrop Documentation, Release 0.13.2

108 Chapter 11. pdtools CLI Reference

cHAPTER 12

Source Code Reference

12.1 Subpackages

12.1.1 paradrop.airshark package

Submodules

paradrop.airshark.airshark module

class AirsharkManager
Bases: object
add_analyzer_observer (observer)
add_spectrum_observer (observer)
check_spectrum ()
on_analyzer_ message (message)
on_interface_down (interface)
on_interface_up (interface)
read_raw_samples ()
remove_analyzer observer (observer)
remove_spectrum_observer (observer)

status ()

paradrop.airshark.analyzer module

class AnalyzerProcessProtocol (airshark_manager)
Bases: twisted.internet.protocol.ProcessProtocol

109

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

childDataReceived (childFd, data)
connectionMade ()
feedSpectrumData (data)
isRunning ()

processEnded (status)

stop ()

paradrop.airshark.scanner module
class Scanner (interface)
Bases: object
cmd_chanscan ()
cmd _disable ()
cmd_set_samplecount (count)
cmd_set_short_repeat (short_repeat)
debugfs_dir = None
dev_to_phy (dev)
freqlist = None
get_debugfs_dir ()
interface = None
process = None
set_ freqs (minf, maxf, spacing)
spectrum_reader = None
start ()

stop ()

paradrop.airshark.spectrum_reader module

class SpectrumReader (path)
Bases: object

static decode ()
For information about the decoding of spectral samples see: https://wireless.wiki.kernel.org/en/users/
drivers/ath9k/spectral_scan https://github.com/erikarn/ath_radar_stuff/tree/master/lib and your ath9k im-
plementation in e.g. /drivers/net/wireless/ath/ath9k/common-spectral.c

flush ()
hdrsize = 3
pktsize = 73

read_samples ()

sc_wide = 0.3125

110 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://wireless.wiki.kernel.org/en/users/drivers/ath9k/spectral_scan
https://wireless.wiki.kernel.org/en/users/drivers/ath9k/spectral_scan
https://github.com/erikarn/ath_radar_stuff/tree/master/lib

paradrop Documentation, Release 0.13.2

Module contents
12.1.2 paradrop.backend package

Submodules
paradrop.backend.airshark_api module

APIs for developers to check whether Airshark feature is available or not

class AirsharkApi (airshark_manager)
Bases: object

routes
L{Klein} is an object which is responsible for maintaining the routing configuration of our application.

@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.
@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

status (request)

paradrop.backend.airshark_ws module
class AirsharkAnalyzerFactory (airshark_manager, *args, **kwargs)
Bases: autobahn.twisted.websocket .WebSocketServerFactory

buildProtocol (addr)
Create an instance of a subclass of Protocol.

The returned instance will handle input on an incoming server connection, and an attribute “factory”
pointing to the creating factory.

Alternatively, C{None} may be returned to immediately close the new connection.
Override this method to alter how Protocol instances get created.
@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

class AirsharkAnalyzerProtocol (factory)
Bases: autobahn.twisted.websocket.WebSocketServerProtocol

onClose (wasClean, code, reason)
Implements autobahn.websocket.interfaces.IWebSocketChannel.onClose ()

onOpen ()
Implements autobahn.websocket.interfaces.IWebSocketChannel.onOpen ()

on_analyzer_message (message)

class AirsharkSpectrumFactory (airshark_manager, *args, **kwargs)
Bases: autobahn.twisted.websocket .WebSocketServerFactory

buildProtocol (addr)
Create an instance of a subclass of Protocol.

1]

The returned instance will handle input on an incoming server connection, and an attribute “factory’
pointing to the creating factory.

Alternatively, C{None} may be returned to immediately close the new connection.

Override this method to alter how Protocol instances get created.

12.1. Subpackages 111

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

class AirsharkSpectrumProtocol (factory)
Bases: autobahn.twisted.websocket .WebSocketServerProtocol

onClose (wasClean, code, reason)
Implements autobahn.websocket.interfaces.IWebSocketChannel.onClose ()

onOpen ()
Implements autobahn.websocket.interfaces.IWebSocketChannel.onOpen ()

on_spectrum_data (data)

paradrop.backend.auth module
class AuthApi (password_manager, token_manager)
Bases: object

auth_cloud (request)
Login using credentials from the cloud controller.

This is an experimental new login method that lets users present a token that they received from the cloud
controller as a login credential for a node. The idea is to enable easy access for multiple developers to
share a node, for example, during a tutorial.

Instead of a username/password, the user presents a token received from the cloud controller. The ver-
ify_cloud_token function verifies the validity of the token with the controller, and if successful, retrieves
information about the bearer, particularly the username and role. Finally, we generate a new token that
enables the user to authenticate with local API endpoints.

local_login (request)
Login using local authentication (username+password).

routes
L{Klein} is an object which is responsible for maintaining the routing configuration of our application.

@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.
@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

check_auth (request, password_manager, token_manager)

get_access_level (user, node)

get_allowed_bearer ()
Return set of allowed bearer tokens.

get_username_password (userpass)
Please note: username and password can either be presented in plain text such as “admin:password” or base64
encoded such as “YWRtaW46cGFzc3dvemQ=". Both forms should be returned from this function.

requires_auth (func)
Use as a decorator for API functions to require authorization.

This checks the Authorization HTTP header. It handles username and password as well as bearer tokens.
verify cloud_token (foken)

verify_ password (password_manager, userpass)

112 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop

Documentation, Release 0.13.2

paradrop.backend.chute_api module

Install and manage chutes on the host.
Endpoints for these functions can be found under /api/v1/chutes.

class ChuteApi (update_manager)
Bases: object

create_chute (request)
delete_chute (request, chute)
delete_station (request, chute, network, mac)

get_chute (request, chute)
Get information about an installed chute.

Example request:

GET /api/vl/chutes/hello-world

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"environment": {},

"name": "hello-world",

"allocation": {
"cpu_shares": 1024,

"prioritize_traffic": false
} 4
"state": "running",
"version": "x1511808778",
"resources": null

get_chute_cache (request, chute)
Get chute cache contents.

The chute cache is a key-value store used during chute installation
Paradrop platform.

get_chute_config (request, chute)
Get current chute configuration.

Example request:

. It can be useful for debugging the

GET /api/vl/chutes/captive-portal/config

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"net": {
"wifi": |
"dhcp" . {

(continues on next page)

12.1. Subpackages

113

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

(continued from previous page)

"lease": "1h",
"limit": 250,
"start": 3

}I

"intfName": "wlanO",

"options": {
"isolate": True

o

"ssid": "Free WiFi",

"type": "wifi"

get_chutes (request)

List installed chutes.

Example request:

GET /api/vl/chutes/

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"environment": {},

"name": "hello-world",

"allocation": {
"cpu_shares": 1024,

"prioritize_traffic": false
b

"state": "running",
"version": "x1511808778",
"resources": null

get_hostapd_status (request, chute, network)

Get low-level status information from the access point.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/hostapd_status

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"olbc_ht": "O",
"cac_time_left_seconds": "N/A",
"num sta no_short_slot_time": "0",
"olbc" : n l n ,

(continues on next page)

114

Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

(continued from previous page)

"num_sta_non_erp": "0",
"ht_op_mode": "0Ox4",

"state": "ENABLED",

"num sta ht40_intolerant": "0",
"channel": "11",

"bssid[0]": "02:00:08:24:03:dd",
"ieee80211ln": "1",
"cac_time_seconds": "0",

"num sta[O0]": "1",
"ieee802l1llac": "O",

"Phy": "phyO",
"num_sta_ht_no_gf": "1",

"freq": "2462",
"num_sta_ht_20_mhz": "1",
"num_sta_no_short_preamble": "0",
"secondary_ channel": "0",
"ssid[0]": "Free WiFi",
"num_sta_no_ht": "0",

"bss[0]": "vwlan7elb"

get_leases (request, chute, network)
Get current list of DHCP leases for chute network.

Returns a list of DHCP lease records with the following fields:
expires lease expiration time (seconds since Unix epoch)
mac_addr device MAC address

ip_addr device IP address

hostname name that the device reported

client_id optional identifier supplied by device

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/leases

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"eclient_id": "01:5¢c:59:48:7d:b9%:e06",
"expires": "1511816276",

"ip addr": "192.168.128.64",
"mac_addr": "5¢:59:48:7d:b9%:e06",
"hostname": "paradrops—iPod"

get_network (request, chute, network)
Get information about a network configured for the chute.

Example request:

12.1. Subpackages 115

paradrop Documentation, Release 0.13.2

GET /api/vl/chutes/captive-portal/networks/wifi

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"interface": "wlanO",
thpell: "Wifi",
"name": "wifi"

get_networks (request, chute)
Get list of networks configured for the chute.

Example request:

GET /api/vl/chutes/captive-portal/networks

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"interface": "wlanO",
lltypell: "Wi f-l H,
"naIneH. "Wifi"

get_ssid (request, chute, network)
Get currently configured SSID for the chute network.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/ssid

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"ssid": "Free WiFi",
"bssid": "02:00:08:24:03:dd"

get_station (request, chute, network, mac)
Get detailed information about a connected station.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/stations/5c:59:48:7d:b9:e6

Example response:

116 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

Content-Type:

HTTP/1.1 200 OK

"inactive time":

application/json

"rx_packets": "230",
"tdls_peer": "no",
"authenticated": "yes",
"rx_bytes": "12511",
"tx_bitrate": "1.0 MBit/s",
"tx_retries": "O",

"signal": "-45 [-49, -48] dBm",
"authorized": "yes",

"rx bitrate": "65.0 MBit/s MCS 7",
"mfp": "no",

"tx_failed": "0O",

"4688 ms",

"mac_addr": "5¢:59:48:7d:b9:e6",
"tx_bytes": "34176",

"wmm_wme": "yes",

"preamble": "short",

"tx_packets": "88",

"signal_avg": "-44 [-48, -47] dBm"

get_stations (request, chute, network)

Get detailed information about connected wireless stations.

Example request:

GET /api/vl/chutes/captive-portal/networks/wifi/stations

Example response:

HTTP/1.1 200 OK

Content-Type:

"rx_bitrate":

application/json

"rx_packets": "230",
"tdls_peer": "no",
"authenticated": "yes",
"rx_bytes": "12511",
"tx_bitrate": "1.0 MBit/s",
"tx_retries": "O",

"signal": "-45 [-49, -48] dBm",
"authorized": "yes",

"65.0 MBit/s MCS 7",

"mfp": "no",

"tx_failed": "O",

"inactive_time": "4688 ms",
"mac_addr": "5¢:59:48:7d:b9%:e06",
"tx_bytes": "34176",

"wmm_wme": "yes",

"preamble": "short",

"tx_packets": "88",

"signal_avg": "-44 [-48, -47] dBm"

12.1. Subpackages

117

paradrop Documentation, Release 0.13.2

hostapd_control (request, chute, network)
restart_chute (request, chute)

routes

L{Klein} is an object which is responsible for maintaining the routing configuration of our application.

@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.

@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

set_chute_config (request, chute)
Update the chute configuration and restart to apply changes.

Example request:

PUT /api/vl/chutes/captive-portal/config
Content-Type: application/json

"net": {
"wifi": {

"dhcp": {
"lease": "1h",
"limit": 250,
"start": 3

}I

"intfName": "wlanO",

"options": {
"isolate": True

b

"ssid": "Better Free WiFi",

"type": "wifi"

Example response:

HTTP/1.1 200 OK
Content-Type: application/Jjson

"change_id": 1

set_ssid (request, chute, network)
Change the configured SSID for the chute network.

The change will not persist after a reboot. If a persistent change is desired, you should update the chute

configuration instead.

Example request:

PUT /api/vl/chutes/captive-portal/networks/wifi/ssid
Content-Type: application/json

"ssid": "Best Free WiFi"

118 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"message": "OK"

start_chute (request, chute)
stop_chute (request, chute)
update_chute (request, chute)

class ChuteCacheEncoder (skipkeys=False, ensure_ascii=True, check_circular=True, al-
low_nan=True, sort_keys=False, indent=None, separators=None,
encoding="utf-8’, default=None)
Bases: json.encoder.JSONEncoder
JSON encoder for chute cache dictionary.

The chute cache can contain arbitrary objects, some of which may not be JSON-serializable. This encoder
returns handles unserializable objects by returning the repr string.

default (o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default (self, o):

try:
iterable = iter (o)
except TypeError:
pass
else:

return list (iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default (self, o)

class ChuteEncoder (skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, encoding="utf-8’, de-

fault=None)
Bases: json.encoder.JSONEncoder

default (0)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default (self, o):

try:
iterable = iter (o)
except TypeError:
pass
else:

return list (iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default (self, o)

12.1. Subpackages 119

paradrop Documentation, Release 0.13.2

class UpdateEncoder (skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, encoding="utf-8’, de-

fault=None)
Bases: json.encoder.JSONEncoder

default (o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default (self, o):

try:
iterable = iter (o)
except TypeError:
pass
else:

return list (iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default (self, o)

chute_access_allowed (request, chute)
extract_tarred chute (data)
permission_denied (request)

tarfile_is_safe (tar)
Check the names of files in the archive for safety.

Returns True if all paths are relative and safe or False if any of the paths are absolute (leading slash) or try to
access parent directories (leading ..).

paradrop.backend.config_api module

This module exposes device configuration.
Endpoints for these functions can be found under /api/v1/config.

class ConfigApi (update_manager, update_fetcher)
Bases: object

Configuration API.
This class handles HTTP API calls related to router configuration.

factory_reset (**kwargs)
Initiate the factory reset process.

get_hostconfig (request)
Get the device’s current host configuration.

Example request:

GET /api/vl/config/hostconfig

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

120 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

(continued from previous page)

"firewall": {
"defaults": {
"forward": "ACCEPT",
"input": "ACCEPT",
"output": "ACCEPT"

s

For a complete example, please see the Host Configuration section.

get_pdid (request)
Get the device’s current ParaDrop ID. This is the identifier assigned by the cloud controller.

Example request:

GET /api/vl/config/pdid

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

pdid: "5890eleb5ab7e317e6c6e049£"

get_provision (request)
Get the provision status of the device.

get_settings (request)
Get current values of system settings.

These are the values from paradrop.base.settings. Settings are loaded at system initialization from the
settings.ini file and environment variables. They are intended to be read-only after initialization.

This endpoint returns the settings as a dictionary with lowercase field names.
Example: {

“portal_server_port”: 8080, ...
}

new_config (request)
Generate a new node configuration based on the hardware.

Example request:

GET /api/vl/config/new_config

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"firewall": {

(continues on next page)

12.1. Subpackages 121

paradrop Documentation, Release 0.13.2

(continued from previous page)

"defaults": {

"forward": "ACCEPT",
"input": "ACCEPT",
"output": "ACCEPT"

y

For a complete example, please see the Host Configuration section.

pdconf (request)
Get configuration sections from pdconf.

This returns a list of configuration sections and whether they were successfully applied. This is intended

for debugging purposes.

pdconf_reload (request)
Trigger pdconf to reload UCI configuration files.

Trigger pdconf to reload UCI configuration files and return the status. This function is intended for low-

level debugging of the paradrop pdconf module.

provision (request)
Provision the device with credentials from a cloud controller.

routes
L{Klein} is an object which is responsible for maintaining the routing configuration of our application.

@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.
@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

sshKeys (request, user)
Manage list of authorized keys for SSH access.

start_update (request)

update_hostconfig (request)
Replace the device’s host configuration.

Example request:

PUT /api/vl/config/hostconfig
Content-Type: application/json

{

"firewall": {
"defaults": {
"forward": "ACCEPT",
"input": "ACCEPT",
"output": "ACCEPT"

b

Example response:

122 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

HTTP/1.1 200 OK
Content-Type: application/json

{
change_id: 1
}

For a complete example, please see the Host Configuration section.

paradrop.backend.cors module
Write the CROSS-ORIGIN RESOURCE SHARING headers required Reference: http://msoulier.wordpress.com/
2010/06/05/cross-origin-requests-in-twisted/

config_cors (request)

paradrop.backend.http_server module

The HTTP server to serve local portal and provide RESTful APIs

class HttpServer (update_manager, update_fetcher, airshark_manager, portal_dir=None)
Bases: object

airshark_analyzer (request, *args, **kwargs)
airshark_spectrum (request, *args, **kwargs)
api_airshark (request, *args, **kwargs)
api_audio (request)

api_auth (request)

api_changes (request, *args, **kwargs)
api_chute (request, *args, **kwargs)
api_configuration (request, *args, **kwargs)
api_information (request, *args, **kwargs)
api_network (request, *args, **kwargs)
api_password (request, *args, **kwargs)

app
L{Klein} is an object which is responsible for maintaining the routing configuration of our application.

@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.
@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

change_stream (request, *args, **kwargs)

chute_logs (request, *args, **kwargs)

home (request, *args, **kwargs)

logs (request, *args, **kwargs)

paradrop_logs (request, *args, **kwargs)

snapd (request, *args, **kwargs)

12.1. Subpackages 123

http://msoulier.wordpress.com/2010/06/05/cross-origin-requests-in-twisted/
http://msoulier.wordpress.com/2010/06/05/cross-origin-requests-in-twisted/
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

status (request, *args, **kwargs)

annotate_routes (router, prefix)
Annotate klein routes for compatibility with autoflask generator.

setup_http_server (http_server, host, port)

paradrop.backend.information_api module

Provide information of the router, e.g. board version, CPU information, memory size, disk size.
Endpoints for these functions can be found under /api/v1/info.

class InformationApi
Bases: object

get_environment (request)
Get environment variables.

Returns a dictionary containing the environment variables passed to the Paradrop daemon. This is useful
for development and debugging purposes (e.g. see how PATH is set on Paradrop when running in different
contexts).

Example request:

GET /api/vl/info/environment

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"LANG": "C.UTF-8",

"SNAP_REVISION": "x73",

"SNAP_COMMON": "/var/snap/paradrop-daemon/common",

"XDG_RUNTIME_DIR": "/run/user/0/snap.paradrop—-daemon",

"SNAP_USER_COMMON": "/root/snap/paradrop—-daemon/common",

"SNAP_LIBRARY_PATH": "/var/lib/snapd/lib/gl:/var/lib/snapd/void",

"SNAP_NAME": "paradrop-daemon",

"PWD": "/var/snap/paradrop-daemon/x73",

"PATH": "/snap/paradrop-daemon/x73/usr/sbin:/snap/paradrop—daemon/x73/usr/
—bin:/snap/paradrop-daemon/x73/sbin:/snap/paradrop-daemon/x73/bin:/usr/local/
—sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/
—games",

"SNAP": "/snap/paradrop-daemon/x73",

"SNAP_DATA": "/var/snap/paradrop-daemon/x73",

"SNAP_VERSION": "0.9.2",

"SNAP_ARCH": "amd64",

"SNAP_USER_DATA": "/root/snap/paradrop-daemon/x73",

"TEMPDIR": "/tmp",

"HOME": "/root/snap/paradrop-daemon/x73",

"SNAP_REEXEC": "",

"LD_LIBRARY_PATH": "/var/lib/snapd/lib/gl:/var/lib/snapd/void:/snap/
—paradrop-daemon/x73/usr/1ib/x86_64-1linux-gnu: :/snap/paradrop-daemon/x73/
—1lib:/snap/paradrop-daemon/x73/usr/1lib:/snap/paradrop-daemon/x73/1ib/x86_64~—
—linux—gnu:/snap/paradrop-daemon/x73/usr/1lib/x86_64-1linux—gnu",

"TMPDIR": "/tmp"

(continues on next page)

124 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

(continued from previous page)

get_features (request)
Get features supported by the host.

This is a list of strings specifying features supported by the daemon.
Explanation of feature strings:

hostapd-control The daemon supports the hostapd control interface and provides a websocket channel
for accessing it.

Example request:

GET /api/vl/info/features

Example response:

HTTP/1.1 200 OK
Content-Type: application/Jjson

"hostapd-control"

get_telemetry (request)
Get a telemetry report.

This contains information about resource utilization by chute and system totals. This endpoint returns the
same data that we periodically send to the controller if telemetry is enabled.

hardware_info (request)
Get information about the hardware platform.

Example request:

GET /api/vl/info/hardware

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"wifi": [
{
"slot": "pci/0000:04:00.0",
"vendorId": "0x168c",
"macAddr": "04:f0:21:2f:b7:cl",
"id": "pci-wifi-O",
"deviceId": "0x003c"

"slot": "pci/0000:06:00.0",
"vendorId": "0x168c",
"macAddr": "04:£0:21:0£:78:28",
"id": "pci-wifi-1",

(continues on next page)

12.1. Subpackages 125

paradrop Documentation, Release 0.13.2

(continued from previous page)

"deviceId": "0x002a"
}

1,
"memory": 2065195008,

"wvendor": "PC Engines",
"board": "APU 1.0",
"cpu": "x86_64"

}

routes

L{Klein} is an object which is responsible for maintaining the routing configuration of our application.
@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.

@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

software_info (request)

Get information about the operating system.

Returns a dictionary containing information the BIOS version, OS version, kernel version, Paradrop ver-
sion, and system uptime.

Example request:

GET /api/vl/info/software

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"biosVersion": "SageBios_PCEngines_APU-45",
"biosDate": "04/05/2014",

"uptime": 15351,

"kernelVersion": "Linux—-4.4.0-101-generic",
"pdVersion": "0.9.2",

"biosVendor": "coreboot",

"osVersion": "Ubuntu 4.4.0-101.124-generic 4.4.95"

paradrop.backend.log_sockjs module

class LogSockJSFactory (chute)

Bases: autobahn.twisted.websocket.WebSocketServerFactory

buildProtocol (addr)

Create an instance of a subclass of Protocol.

The returned instance will handle input on an incoming server connection, and an attribute “factory”
pointing to the creating factory.

Alternatively, C{None} may be returned to immediately close the new connection.
Override this method to alter how Protocol instances get created.

@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

126

Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

class LogSockJSProtocol (factory)
Bases: autobahn.twisted.websocket .WebSocketServerProtocol

check_log ()

onClose (wasClean, code, reason)
Implements autobahn.websocket.interfaces.IWebSocketChannel.onClose ()

onOpen ()
Implements autobahn.websocket.interfaces.IWebSocketChannel.onOpen ()

paradrop.backend.password_api module
class PasswordApi (password_manager)
Bases: object
For now, we only support set/reset password for the default user: ‘paradrop’
change (request)
clear (request)

routes
L{Klein} is an object which is responsible for maintaining the routing configuration of our application.

@ivar _url_map: A C{werkzeug.routing.Map} object which will be used for routing resolution.

@ivar _endpoints: A C{dict} mapping endpoint names to handler functions.

paradrop.backend.password_manager module
class PasswordManager
Bases: object
add_user (user_name, password)
change_password (user_name, newPassword)
remove_user (user_name)
reset ()

verify password (user_name, password)

paradrop.backend.snapd_resource module
class SnapdResource
Bases: twisted.web.resource.Resource
Expose the snapd API by forwarding requests.

Changed in 0.13: we try to send the request through the governor service so that paradrop can be installed in
strict mode.

https://github.com/snapcore/snapd/wiki/REST- API

do_snapd_ request (request)
Forward the API request to snapd.

isLeaf = True

12.1. Subpackages 127

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://github.com/snapcore/snapd/wiki/REST-API

paradrop Documentation, Release 0.13.2

render (request)
Fulfill requests by forwarding them to snapd.

We use a synchronous implementation of HTTP over Unix sockets, so we do the request in a worker thread
and have it call request.finish.

paradrop.backend.status_sockjs module
class StatusSockJSFactory (system_status)
Bases: autobahn.twisted.websocket .WebSocketServerFactory

buildProtocol (addr)
Create an instance of a subclass of Protocol.

The returned instance will handle input on an incoming server connection, and an attribute “factory”
pointing to the creating factory.

Alternatively, C{None} may be returned to immediately close the new connection.
Override this method to alter how Protocol instances get created.
@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

class StatusSockJSProtocol (factory)
Bases: autobahn.twisted.websocket .WebSocketServerProtocol

onClose (wasClean, code, reason)
Implements autobahn.websocket.interfaces.IWebSocketChannel.onClose ()

onMessage (data, isBinary)
Implements autobahn.websocket.interfaces.IWebSocketChannel.onMessage ()

onOpen ()
Implements autobahn.websocket.interfaces.IWebSocketChannel.onOpen ()

Module contents
12.1.3 paradrop.base package
Submodules

paradrop.base.cxbr module

Wamp utility methods.

class BaseClientFactory (factory, *args, **kwargs)
Bases: autobahn.twisted.websocket .WampWebSocketClientFactory, twisted.
internet.protocol.ReconnectingClientFactory

clientConnectionFailed (connector, reason)
Called when a connection has failed to connect.

It may be useful to call connector.connect() - this will reconnect.
@type reason: L{twisted.python.failure.Failure}

clientConnectionlLost (connector, reason)
Called when an established connection is lost.

It may be useful to call connector.connect() - this will reconnect.

128 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

@type reason: L{twisted.python.failure.Failure}
initialDelay =1
maxDelay = 60

class BaseSession (config=None)
Bases: autobahn.twisted.wamp.ApplicationSession

Temporary base class for crossbar implementation

call (procedure, *args, **kwargs)
Implements autobahn.wamp.interfaces.ICaller.call()

leave ()
Implements autobahn.wamp.interfaces.ISession.leave ()

ondJdoin (**kwargs)
Implements autobahn.wamp.interfaces.ISession.onJoin ()

publish (fopic, *args, **kwargs)
Implements aut obahn.wamp.interfaces.IPublisher.publish ()

register (endpoint, procedure=None, options=None)
Implements autobahn.wamp.interfaces.ICallee.register ()

classmethod start (address, pdid, realm=’paradrop’, start_reactor=False, debug=False, ex-

tra=None, reconnect=True)
Creates a new instance of this session and attaches it to the router at the given address and realm.

reconnect: The session will attempt to reconnect on connection failure and continue trying indefi-
nitely.

stockCall (procedure, *args, **kwargs)

stockPublish (fopic, *args, **kwargs)

stockRegister (endpoint, procedure=None, options=None)
stockSubscribe (handler, topic=None, options=None)

subscribe (handler, topic=None, options=None)
Implements autobahn.wamp.interfaces.ISubscriber.subscribe ()

class BaseSessionFactory (config, deferred=None)
Bases: autobahn.twisted.wamp.ApplicationSessionFactory

paradrop.base.exceptions module

Exceptions and their subclasses
TODO: Distill these down and make a heirarchy.

exception AuthenticationError
Bases: paradrop.base.exceptions.PdServerException

exception ChuteNotFound
Bases: paradrop.base.exceptions.ParadropException

exception ChuteNotRunning
Bases: paradrop.base.exceptions.ParadropException

exception DeviceNotFoundException
Bases: paradrop.base.exceptions.ParadropException

12.1. Subpackages 129

paradrop Documentation, Release 0.13.2

exception InteralException

Bases: exceptions.Exception

exception InvalidCredentials

Bases: paradrop.base.exceptions.PdServerException

exception ModelNotFound

Bases: paradrop.base.exceptions.PdServerException

exception ParadropException

Bases: exceptions.Exception

exception PdServerException

Bases: exceptions.Exception

exception PdidError

Bases: paradrop.base.exceptions.PdServerException

exception PdidExclusionError

Bases: paradrop.base.exceptions.PdServerException

exception ServiceNotFound (name)

Bases: paradrop.base.exceptions.ParadropException

paradrop.base.nexus module

Stateful, singleton, paradrop daemon command center. See docstring for NexusBase class for information on settings.

SETTINGS QUICK REFERENCE: # assuming the following import from paradrop.base import nexus

nexus.core.info.version nexus.core.info.pdid

class AttrWrapper

Bases: object

Simple attr interceptor to make accessing settings simple.

Stores values in an internal dict called contents.

Does not allow modification once _lock() is called. Respect it.

Once you’ve filled it up with the appropriate initial values, set onChange to assign

setOnChange (func)

class NexusBase (stealStdio=True, printToConsole=True)

Bases: object

Resolving these values to their final forms: 1 - module imported, initial values assigned(as written below) 2
- class is instatiated, passed settings to replace values 3 - instance chooses appropriate values based on
current state(production or local)

Each category has its own method for initialization here (see: resolveNetwork, resolvePaths)
PDID = None
VERSION = 1

connect (**kwargs)
Takes the given session class and attempts to connect to the crossbar fabric.

If an existing session is connected, it is cleanly closed.

getKey (name)
Returns the given key or None

130

Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

onInfoChange (key, value)
Called when an internal setting is changed. Trigger a save automatically.

onStart ()
onStop ()
provision (pdid, pdserver="https://paradrop.org’, wampRouter="wss://paradrop.org/ws’)

provisioned()
Checks if this[whatever] appears to be provisioned or not

save ()
Ehh. Ideally this should happen asynchronously.

saveKey (key, name)
Save the key with the given name. Overwrites by default

createDefaultInfo (path)

resolvelInfo (nexus, path)
Given a path to the config file, load its contents and assign it to the config file as appropriate.

validateInfo (contents)
Error checking on the read YAML file. This is a temporary method.

param contents: the read - in yaml to check

type contents: dict.

returns: True if valid, else false

writeYaml (contents, path)
Overwrites content with YAML representation at given path

paradrop.base.output module

Output mapping, capture, storange, and display.
Some of the methods and choice here may seem strange — they are meant to keep this file in

class BaseOutput (logType)
Bases: object

Base output type class.

This class and its subclasses are registered with an attribute on the global ‘out’ function and is responsible for
formatting the given output stream and returning it as a “log structure” (which is a dict.)

For example: out.info(“Text”, anObject)

requires a custom object to figure out what to do with anObject where the default case will simply parse the
string with an appropriate color.

Objects are required to output a dict that mininmally contains the keys message and type.

formatOutput (logDict)
Convert a logdict into a custom formatted, human readable version suitable for printing to console.

12.1. Subpackages 131

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

class ExceptionOutput (logType)
Bases: paradrop.base.output.BaseOutput

Handle vanilla exceptions passed directly to us using out.exception

class Level
Bases: enum.Enum

ERR = 6
FATAL = 8
HEADER = 1
INFO = 3
PERF = 4

SECURITY = 7
USAGE = 9
VERBOSE = 2
WARN = 5

class Output (**kwargs)
Bases: object

Class that allows stdout/stderr trickery. By default the paradrop object will contain an @out variable
(defined below) and it will contain 2 members of “err” and “fatal”.

Each attribute of this class should be a function which points to a class that inherits IOutput(). We
call these functions “output streams”.

The way this Output class is setup is that you pass it a series of kwargs like (stuff=OutputClass()).
Then at any point in your program you can call “paradrop.out.stuff(“This is a string

This way we can easily support different levels of verbosity without the need to use some kind of
bitmask or anything else. On-the-fly output creation is no longer supported due to the metadata and
special processing added. It is still possible, but not implemented.

This is done by the __getattr__ function below, basically in __init__ we set any attributes you pass
as args, and anything else not defined gets sent to __getattr__ so that it doesn’t error out.

endLogging ()
Ask the printing thread to flush and end, then return.

getLogsSince (target, purge=False)
Reads all logs and returns their contents. The current log file is not touched. Removes old log files if
‘purge’ is set (though this is a topic for debate. . .)

The server will be most interested in this call, but it needs to register for new logs first, else there’s a good
chance to see duplicates.

NOTE: don’t open all log files, check to open only the ones that might be relevant. This is certainly a bug
and can cause memory issues.

Parameters

* target (float.)—seconds since the GMT epoch. Method returns logs that have times-
tamps later than this.

* purge (bool.) - deletes the old log files (except today’s) if set

132 Chapter 12. Source Code Reference

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

Returns a list of dictionaries containing log information. Not ordered.

handlePrint (logDict)
All printing objects return their messages. These messages are routed to this method for handling.

Send the messages to the printer. Optionally display the messages. Decorate the print messages with
metadata.

Parameters logDict — a dictionary representing this log item. Must contain keys
message and type. :type logDict: dict.
logToConsole (newStatus)

messageToString (message)
Converts message dicts to a format suitable for printing based on the conversion rules laid out in in that
class’s implementation.

Parameters message (dict.) — the dict to convert to string
Returns str

startlogging (filePath=None, stealStdio=False, printToConsole=True)
Begin logging. The output class is ready to go out of the box, but in order to prevent mere imports from
stealing stdio or console logging to vanish these must be manually turned on.

Parameters

e filePath (str) —if provided, begin logging to the given directory. If not provided, do
not write out logs.

* stealStdio (bool.) - choose to intercept stdio (including vanilla print statements) or
allow it to passthrough

* printToConsole (bool.) — output the results of all logging to the console. This is
primarily a performance consideration when running in production

stealStdio (newStatus)

class OutputRedirect (output, contentAppearedCallback, logType)
Bases: object

Intercepts passed output object (either stdout and stderr), calling the provided callback method when input
appears.

Retains the original mappings so writing can still happen. Performs no formatting.
flush ()

trueWrite (contents)
Someone really does want to output

write (contents)
Intercept output to the assigned target and callback with it. The true output is returned with the callback
so the delegate can differentiate between captured outputs in the case when two redirecters are active.

class PrintLogThread (path, queue, name)
Bases: threading.Thread

All file printing access from one thread.
Receives information when its placed on the passed queue. Called from one location: Output.handlePrint.

Does not close the file: this happens in Output.endLogging. This simplifies the operation of this class, since it
only has to concern itself with the queue.

12.1. Subpackages 133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/threading.html#threading.Thread

paradrop Documentation, Release 0.13.2

The path must exist before DailyLog runs for the first time.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

class TwistedException (logType)
Bases: paradrop.base.output.BaseOutput

class TwistedOutput (logType)
Bases: paradrop.base.output.BaseOutput

blacklist = ['Starting factory', 'Stopping factory', 'Log opened']

parselogPrefix (tb)
Takes a traceback returned by ‘extract_tb’ and returns the package, module, and line number

silentLogPrefix (stepsUp)
logPrefix v2— gets caller information silently (without caller intervention) The single parameter reflects how far
up the stack to go to find the caller and depends how deep the direct caller to this method is wrt to the target
caller

NOTE: Some calls cannot be silently prefixed (getting into the twisted code is a great example)

Parameters stepsUp — the number of steps to move up the stack for the caller

paradrop.base.pdutils module

lib.utils.output. Helper for formatting output from Paradrop.

class Timer (key=", verbose=True)
Bases: object

A timer object for simple benchmarking.
Usage:

with Timer(key="Name of this test’) as t: do.someCode(thatTakes=aWhile)
Once the code finishes executing the time is output.

check (pkt, pktType, keyMatches=None, **valMatches)
This function takes an object that was expected to come from a packet (after it has been JSONized) and compares
it against the arg requirements so you don’t have to have 10 if() statements to look for keys in a dict, etc..

Args: @pkt : object to look at @pktType : object type expected (dict, list, etc..) @keyMatches : a list of
minimum keys found in parent level of dict, expected to be an array @valMatches : a dict of key:value
pairs expected to be found in the parent level of dict

the value can be data (like 5) OR a type (like this value must be a @list@).
Returns: None if everything matches, otherwise it returns a string as to why it failed.

convertUnicode (elem)
Converts all unicode strings back into UTF-8 (str) so everything works. Call this function like:

json.loads(s, object_hook=convertUnicode)

class dict2obj (aDict=None, **kwargs)
Bases: object

134 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

explode (pkt, *args)
This function takes a dict object and explodes it into the tuple requested.

It returns None for any value it doesn’t find.
The only error it throws is if args is not defined.
Example: pkt={‘a’:0, ‘b’:1} 0, 1, None = pdcomm.explode(pkt, ‘a’, ‘b’, ‘c’)

jsonPretty (j)
Returns a string of a JSON object in ‘pretty print’ format fully indented, and sorted.

stimestr (x=None)

timedur (x)
Print consistent string format of seconds passed. Example: 300 = ‘5 mins’ Example: 86400 = ‘1 day’ Example:
86705 = ‘1 day, 5 mins, 5 sec’

timeflt ()
timeint ()
timestr (x=None)

urlDecodeMe (¢lem)
Converts any values that would cause JSON parsing to fail into URL percent encoding equivalents. This function
can be used for any valid JSON type including str, dict, list. Returns:

Same element properly decoded.

urlEncodeMe (elem, safe="")
Converts any values that would cause JSON parsing to fail into URL percent encoding equivalents. This function
can be used for any valid JSON type including str, dict, list. Returns:

Same element properly encoded.

paradrop.base.settings module
This file contains any settings required by ANY and ALL modules of the paradrop system. They are defaulted to some
particular value and can be called by any module in the paradrop system with the following code:

from paradrop import settings print(settings.STUFF)
These settings can be overriden by a KYE:VALUE array
If settings need to be changed, they should be done so by the initialization code (such as pdfcd, pdfc_config, etc...)
This is done by calling the following function: settings.updateSettings(settings_array)

iterate_module_attributes (module)
Iterate over the attributes in a module.

This is a generator function.
Returns (name, value) tuples.

loadSettings (mode="local’, slist=[])
Take a list of key:value pairs, and replace any setting defined. Also search through the settings module and see
if any matching environment variables exist to replace as well.

Parameters slist (array.) — the list of key:val settings

Returns None

12.1. Subpackages 135

paradrop Documentation, Release 0.13.2

load_from_file (path)
Load settings from an INI file.

This will check the configuration file for a lowercase version of all of the settings in this module. It will look in
a section called “base”.

The example below will set PORTAL_SERVER_PORT.
[base] portal_server_port = 4444

parseValue (key)
Attempts to parse the key value, so if the string is ‘False’ it will parse a boolean false.

Parameters key (string) — the key to parse
Returns the parsed key.

updatePaths (configHomeDir, runtimeHomeDir="/var/run/paradrop’)
Module contents

12.1.4 paradrop.confd package

Submodules

paradrop.confd.base module

class ConfigObject (name=None)
Bases: object

PRIO_CONFIG_TIFACE = 30
PRIO_CONFIG_QDISC = 45
PRIO_CREATE_ IFACE = 20
PRIO_CREATE_QDISC = 40

PRIO_CREATE_VLAN = 25
PRIO_IPTABLES_RULE = 37
PRIO_IPTABLES_TOP = 35
PRIO_IPTABLES_ZONE = 36
PRIO_START DAEMON = 60

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

classmethod build (manager, source, name, options, comment)
Build a config object instance from the UCI section.

Arguments: source — file containing this configuration section name — name of the configuration section
If None, a unique name will be generated.

options — dictionary of options loaded from the section comment — comment string or None

136 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

copy ()
Make a copy of the config object.

The copy will receive the same name and option values.

dump ()
Return full configuration section as a string.

findByType (allConfigs, module, typename, where={})
Look up sections by type (generator).

where: filter the returned results by checking option values.

classmethod getModule ()
Get the module name (e.g. “dhcp”, “wireless”) for a ConfigObject class.

getName ()
Return section name.

Subclasses that do not have names (anonymous sections) should override this to return some other unique
identifier such as an interface name.

getTypeAndName ()
Return tuple (section module, section type, section name).

lookup (allConfigs, sectionModule, sectionType, sectionName, addDependent=True)
Look up a section by type and name.

If addDependent is True (default), the current object will be added as a dependent of the found section.
Will raise an exception if the section is not found.

maskable = True

nextId = 0

options = []

optionsMatch (other)
Test equality of config sections by comparing option values.

static prioritizeConfigs (reverse=False)
Assign priorities to config objects based on the dependency graph.

Priority zero is assigned to all configs with no dependencies.

priority(configl) > priority(config2) means configl should be applied later than config2, and configl
should be reverted earlier than config2. For configs with the same priority value, it is presumed that
order does not matter.

If reverse is True, the priorities are made negative so that traversing in increasing order gives the proper
order for reverting.

Returns a list of tuples (priority, config). This format is suitable for heapq.

removeFromParents ()
Remove this section from being tracked by its parents.

Call this before discarding a configuration section so that later on, if the parent is updated, it doesn’t try to
update non-existent children.

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.

12.1. Subpackages 137

paradrop Documentation, Release 0.13.2

Returns a list of (priority, Command) tuples.

setup ()
Finish object initialization.

This is called after the config object is initialized will all of its options values filled in. Override to do some
preparation work before we start generating commands.

typename = None

updateApply (new, allConfigs)
Return a list of commands to update to new configuration.

Implementing this is optional for subclasses. The default behavior is to call apply.
Returns a list of (priority, Command) tuples.

updateRevert (new, allConfigs)
Return a list of commands to (partially) revert the configuration.

The implementation can be selective about what it reverts (e.g. do not delete an interface if we are only
updating its IP address). The default behavior is to call revert.

Returns a list of (priority, Command) tuples.

class ConfigOption (name, type=<type ’str’>, required=False, default=None)
Bases: object

default
name
required
type

interpretBoolean (s)
Interpret string as a boolean value.

“0” and “False” are interpreted as False. All other strings result in True. Technically, only “0” and “1” values
should be seen in UCI files. However, because of some string conversions in Python, we may encounter “False”.

paradrop.confd.client module

reload (path)
Reload file(s) specified by path.

This function blocks until the request completes. On completion it returns a status string, which is a JSON list
of loaded configuration sections with a ‘success’ field. For critical errors it will return None.

reloadall ()
Reload all files from the system configuration directory.

This function blocks until the request completes. On completion it returns a status string, which is a JSON list
of loaded configuration sections with a ‘success’ field. For critical errors it will return None.

systemStatus ()
Return system status string from pdconf.

waitSystemUp ()
Wait for the configuration daemon to finish its first load.

This function blocks until the request completes. On completion it returns a status string, which is a JSON list
of loaded configuration sections with a ‘success’ field. For critical errors it will return None.

138 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

paradrop.confd.command module

class Command (command, parent=None, ignoreFailure=False)
Bases: object
execute ()

success ()
Returns True if the command was successfully executed.

class CommandList
Bases: 1ist

append (priority, command)
L.append(object) — append object to end

commands ()
Iterate over commands in order by priority.

Commands are first sorted by assigned priority. Within each priority level, the order in which they were
added is maintained.

class ErrorCommand (error, parent=None)
Bases: paradrop.confd.command.Command

Special command object that indicates an error occurred.
execute ()

success ()
Returns True if the command was successfully executed.

class FunctionCommand (parent, function, *args, **kwargs)
Bases: paradrop.confd.command.Command

Command that runs a Python function.
execute ()

class KillCommand (pid, parent=None)
Bases: paradrop.confd.command.Command

Special command object for killing a process
execute ()
getPid ()

kill (pid, kill_signal=4, timeout=38)
Kill a child process and wait with timeout.

1. Send a SIGTERM signal to the process.
2. Wait up to kill_signal seconds for the process to exit.
3. If process is still running, send a SIGKILL signal.
4. Wait up to timeout seconds (cumulative with kill_signal) for the process to exit.

Returns True if the process exited before timeout seconds elapsed.

paradrop.confd.dhcp module

class ConfigDhcp (name=None)
Bases: paradrop.confd.base.ConfigObject

12.1. Subpackages 139

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list

paradrop Documentation, Release 0.13.2

options = [ConfigOption (name='interface', type=<type

typename = 'dhcp'

class ConfigDnsmasq (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
options = [ConfigOption (name='authoritative',

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
typename = 'dnsmasq'

class ConfigDomain (name=None)
Bases: paradrop.confd.base.ConfigObject

getName ()
Return section name.

type=<type

'str'>,

'bool'>,

required=True,

required=False,

Subclasses that do not have names (anonymous sections) should override this to return some other unique

identifier such as an interface name.

options = [ConfigOption (name='name',6 type=<type 'str'>,

typename = 'domain'

paradrop.confd.firewall module
class ConfigDefaults (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

getName ()
Return section name.

required=False,

Subclasses that do not have names (anonymous sections) should override this to return some other unique

identifier such as an interface name.

get_iptables ()
Get the list of iptables commands to use (iptables / ip6tables).

options = [ConfigOption(name='input', type=<type 'str'>,

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.

required=False,

140

Chapter 12. Source Code Reference

default=No

defa

default=None),

default='ACCE

paradrop Documentation, Release 0.13.2

Returns a list of (priority, Command) tuples.
typename = 'defaults'

updateApply (new, allConfigs)
Return a list of commands to update to new configuration.

Implementing this is optional for subclasses. The default behavior is to call apply.
Returns a list of (priority, Command) tuples.

updateRevert (new, allConfigs)
Return a list of commands to (partially) revert the configuration.

The implementation can be selective about what it reverts (e.g. do not delete an interface if we are only
updating its IP address). The default behavior is to call revert.

Returns a list of (priority, Command) tuples.

class ConfigForwarding (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
options = [ConfigOption(name='src', type=<type 'str'>, required=True, default=None), C

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
typename = 'forwarding'

class ConfigRedirect (name=None)
Bases: paradrop.confd.base.ConfigObject

ANY PROTO = set(['none', 'any', None])

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
options = [ConfigOption (name='src', type=<type 'str'>, required=False, default=None),

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
typename = 'redirect'

class ConfigRule (name=None)
Bases: paradrop.confd.base.ConfigObject

12.1. Subpackages 141

paradrop Documentation, Release 0.13.2

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

get_iptables ()
Get the list of iptables commands to use (iptables / ip6tables).

options = [ConfigOption (name='name', type=<type 'str'>, required=False, default=None),

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
typename = 'rule'

class ConfigZone (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

get_iptables ()
Get the list of iptables commands to use (iptables / ip6tables).

options = [ConfigOption(name='name', type=<type 'str'>, required=True, default=None),

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

setup ()
Finish object initialization.

This is called after the config object is initialized will all of its options values filled in. Override to do some
preparation work before we start generating commands.

typename = 'zone'

start_iptables_command (cmd, *args)

paradrop.confd.main module

This module listens for messages and triggers reloading of configuration files. This module is the service side of the
implementation. If you want to issue reload commands to the service, see the client.py file instead.

listen (configManager)

run_thread (execute=True)
Start pdconfd service as a thread.

This function schedules pdconfd to run as a thread and returns immediately.

142 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

paradrop.confd.manager module
class ConfigManager (writeDir, execCommands=True)
Bases: object

changingSet (files)
Return the sections from the current configuration that may have changed.

This checks which sections from the current configuration came from files in the given file list. These are
sections that may be changed or removed when we reload the files.

execute (commands)
Execute commands.

Takes a CommandList object.

findMatchingConfig (config, byName=False)
Check the current config for an identical section.

Returns the matching object or None.

getPreviousCommands ()
Get the most recent command list.

loadConfig (search=None, execute=True)
Load configuration files and apply changes to the system.

We process the configuration files in sections. Each section corresponds to an interface, firewall rule,
DHCP server instance, etc. Each time we reload configuration files after the initial time, we check for
changes against the current configuration. Here is the decision tree for handling differences in the newly
loaded configuration vs. the existing configuration:

Section exists in current config (by type and name)?
* No -> Add section, apply changes, and stop.
* Yes -> Continue.
Section is identical to the one in the current config (by option values)?

* No -> Revert current section, mark any affected dependents, add new section, apply changes,
and stop.

¢ Yes -> Continue.

Section has not changed but one of its dependencies has?
* No -> Stop.
* Yes -> Revert current section, mark any affected dependents, add new section, apply
changes, and stop.
readConfig (files)
Load configuration files and return configuration objects.

This method only loads the configuration files without making any changes to the system and returns
configuration objects as a generator.

statusString ()
Return a JSON string representing status of the system.

The format will be a list of dictionaries. Each dictionary corresponds to a configuration block and contains
at the following fields.

12.1. Subpackages 143

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

type: interface, wifi-device, etc. name: name of the section (may be autogenerated for some configs)
comment: comment from the configuration file or None success: True if all setup commands succeeded

unload (execute=True)

waitSystemUp ()
Wait for the first load to complete and return system status string.

findConfigFiles (search=None)
Look for and return a list of configuration files.

The behavior depends on whether the search argument is a file, a directory, or None.

If search is None, return a list of files in the system config directory. If search is a file name (not a path), look for
it in the working directory first, and the system directory second. If search is a full path to a file, and it exists,
then return that file. If search is a directory, return the files in that directory.

paradrop.confd.network module

class ConfigInterface (name=None)
Bases: paradrop.confd.base.ConfigObject
DEV_PLUS_VID = <_sre.SRE Pattern object>

addToBridge (ifname)
Generate commands to add ifname to bridge.

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

maskable = False

options = [ConfigOption (name='proto', type=<type 'str'>, required=True, default=None),

removeFromBridge (ifname)
Generate commands to add ifname to bridge.

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

setup ()
Finish object initialization.

This is called after the config object is initialized will all of its options values filled in. Override to do some
preparation work before we start generating commands.

typename = 'interface'

updateApply (new, allConfigs)
Return a list of commands to update to new configuration.

Implementing this is optional for subclasses. The default behavior is to call apply.

Returns a list of (priority, Command) tuples.

144 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

updateRevert (new, allConfigs)
Return a list of commands to (partially) revert the configuration.

The implementation can be selective about what it reverts (e.g. do not delete an interface if we are only
updating its IP address). The default behavior is to call revert.

Returns a list of (priority, Command) tuples.

paradrop.confd.qos module

class ConfigClass (name=None)
Bases: paradrop.confd.base.ConfigObject
options = [ConfigOption (name='packetsize', type=<type 'int'>, required=False, default=
typename = 'class'

class ConfigClassgroup (name=None)
Bases: paradrop.confd.base.ConfigObject

get_class_id (class_name)
Get ID for a traffic class in this group.

Returns None if the class is not a member of the group.
options = [ConfigOption (name='classes', type=<type 'str'>, required=True, default=None

setup ()
Finish object initialization.

This is called after the config object is initialized will all of its options values filled in. Override to do some
preparation work before we start generating commands.

typename = 'classgroup'

class ConfigClassify (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
make_iptables_cmd (action, ifname, class_id)
options = [ConfigOption (name='target', type=<type 'str'>, required=True, default=None)

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
typename = 'classify'

class ConfigInterface (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.

12.1. Subpackages 145

paradrop Documentation, Release 0.13.2

Returns a list of (priority, Command) tuples.

options = [ConfigOption (name='enabled', type=<type 'bool'>, required=True, default=Non

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

typename = 'interface'

compute_hfsc_params (classes, capacity)

paradrop.confd.wireless module

class ConfGenerator

Bases: object
writeHeader (output)

writeOptions (options, output, title=None)

class ConfigWifiDevice (name=None)

Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

detectPrimaryInterface ()
Find the primary network interface associated with this Wi-Fi device.

By primary we mean the first interface (e.g. wlan0 or wlanl) that exists at system startup before any
interface add commands. We will use the primary interface first, and create additional virtual interfaces

after that.

That seems overly complicated, but it is required in cases where the Wi-Fi device does not support virtual

interfaces.
Returns interface name or None.

nextInterfaceName ()
Get the next available interface name.

options = [ConfigOption (name='type', type=<type 'str'>, required=True, default=None),

releaseInterfaceName (ifname)
Mark an interface name as no longer used.

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

setup ()
Finish object initialization.

146

Chapter 12

. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

This is called after the config object is initialized will all of its options values filled in. Override to do some
preparation work before we start generating commands.

typename = 'wifi-device'

class ConfigWifiIface (name=None)
Bases: paradrop.confd.base.ConfigObject

apply (allConfigs)
Return a list of commands to apply this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.

getIfname (device, interface)
Returns the name to be used by this WiFi interface, e.g. as seen by ifconfig.

This comes from the “ifname” option if it is set. Otherwise, we use the interface name of the associated
network.

getName ()
Return a unique and consistent identifier for the section.

If ifname is set, then that is a good choice for the name because interface names need to be unique on the
system.

If ifname is not set, then we use the combined string device:network. The assumption is that no one will
put multiple APs on the same device and same network, or if they do, (e.g. multiple APs on the br-lan
bridge), then they will configure the ifname to be unique.

getRandomMAC ()
Generate a random MAC address.

Returns a string “02:xx:xx:xx:xx:xx”". The first byte is 02, which indicates a locally administered address.
makeHostapdConf (wifiDevice, interface)
makeWpaSupplicantConf (wifiDevice, interface)
options = [ConfigOption (name='device',K type=<type 'str'>, required=True, default=None)

revert (allConfigs)
Return a list of commands to revert this configuration.

Most subclasses will need to implement this function.
Returns a list of (priority, Command) tuples.
typename = 'wifi-iface'

updateApply (new, allConfigs)
Return a list of commands to update to new configuration.

Implementing this is optional for subclasses. The default behavior is to call apply.
Returns a list of (priority, Command) tuples.

updateRevert (new, allConfigs)
Return a list of commands to (partially) revert the configuration.

The implementation can be selective about what it reverts (e.g. do not delete an interface if we are only
updating its IP address). The default behavior is to call revert.

Returns a list of (priority, Command) tuples.

12.1. Subpackages 147

paradrop Documentation, Release 0.13.2

class HostapdConfGenerator (wifilface, wifiDevice, interface)
Bases: paradrop.confd.wireless.ConfGenerator

generate (path)
getllacOptions ()
getllnOptions ()

getllrOptions ()
Get options related to 802.11r (fast BSS transition).

getMainOptions ()
getRadiusOptions ()
getSecurityOptions ()

readMode (device)
Determine HT/VHT mode if applicable.

writeHeader (output)

class WpaSupplicantConfGenerator (wifilface, wifiDevice, interface)
Bases: paradrop.confd.wireless.ConfGenerator

generate (path)

getMainOptions ()

writeHeader (output)
getPhyFromMAC (mac)
getPhyMACAddress (phy)

get_cipher_list (encryption_mode)
Get list of ciphers from encryption mode.

Example: get_cipher_list(“psk2+tkip+aes”) -> [“TKIP”, “CCMP”]

isHexString (data)
Test if a string contains only hex digits.

Module contents

12.1.5 paradrop.core package
Subpackages

paradrop.core.agent package
Submodules
paradrop.core.agent.http module

class CurlRequestDriver
Bases: paradrop.core.agent.http.HTTPRequestDriver

code_pattern = <_sre.SRE_Pattern object>

curl = <MagicMock name='mock.Curl()' id='139902395902224"'>

148 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

header_ pattern = <_sre.SRE_Pattern object>
lock = <twisted.internet.defer.DeferredLock object>

receive (ignore)
Receive response from curl and convert it to a response object.

receiveHeaders (header_line)
request (method, url, body=None)

class HTTPRequestDriver
Bases: object

request (method, url, body)
setHeader (key, value)

class HTTPResponse (data=None)
Bases: object

class JSONReceiver (response, finished)
Bases: twisted.internet.protocol.Protocol

JSON Receiver

A JSONReceiver object can be used with the twisted HTTP client to receive data from a request and provide it
to a callback function when complete.

Example (response came from an HTTP request): finished = Deferred() re-
sponse.deliverBody(JSONReceiver(finished)) finished.addCallback(func_that_takes_result)

Some error conditions will result in the callback firing with a result of None. The receiver needs to check for
this. This seems to occur on 403 errors where the server does not return any data, but twisted just passes us a
ResponseDone object the same type as a normal result.

connectionLost (reason)
internal: handles connection close events.

dataReceived (data)
internal: handles incoming data.

class PDServerRequest (path, driver=<class ’paradrop.core.agent.http.TwistedRequestDriver’>,

headers={}, setAuthHeader=True)
Bases: object

Make an HTTP request to pdserver.

The API is assumed to use application/json for sending and receiving data. Authentication is automatically
handled here if the router is provisioned.

We handle missing, invalid, or expired tokens by making the request and detecting a 401 (Unauthorized) re-
sponse. We request a new token and retry the failed request. We do this at most once and return failure if the
second attempt returns anything other than 200 (OK).

PDServerRequest objects are not reusable; create a new one for each request.
URL String Substitutions: router_id -> router id

Example: /routers/{router_id}/states -> /routers/halo06/states

get (**query)

classmethod getServerInfo ()
Return the information needed to send API messages to the server.

This can be used by an external program (e.g. pdinstall).

12.1. Subpackages 149

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

patch (*ops)
Expects a list of operations in jsonpatch format (http://jsonpatch.com/).

An example operation would be: {‘op’: ‘replace’, ‘path’: ‘/completed’, ‘value’: True}
post (**data)
put (**data)

receiveResponse (response)
Intercept the response object, and if it’s a 401 authenticate and retry.

request ()

classmethod resetToken ()
Reset the auth token, to be called if the router’s identity has changed.

token = None

class PDServerResponse (response, data=None)
Bases: object

A PDServerResponse object contains the results of a request to pdserver.

This wraps twisted.web.client.Response (cannot be subclassed) and exposes the same variables in addition to a
‘data’ variables. The ‘data’ variable, if not None, is the parsed object from the response body.

class TwistedRequestDriver
Bases: paradrop.core.agent.http.HTTPRequestDriver

pool = <twisted.web.client.HTTPConnectionPool object>

receive (response)
Receive response from twisted web client and convert it to a PDServerResponse object.

request (method, url, body=None)
sem = <twisted.internet.defer.DeferredSemaphore object>

urlEncodeParams (data)
Return data URL-encoded.

This function specifically handles None and boolean values to convert them to JSON-friendly strings (e.g. None
-> ‘null’).

paradrop.core.agent.reporting module

class NodeIdentitySender (model="states’, max_retries=None)
Bases: paradrop.core.agent.reporting.ReportSender

send (report)

class ReportSender (model="states’, max_retries=None)
Bases: object

increaseDelay ()
send (report)

class StateReport
Bases: object

toJSON ()

150 Chapter 12. Source Code Reference

http://jsonpatch.com/
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

class StateReportBuilder
Bases: object

prepare ()

class TelemetryReportBuilder
Bases: object

prepare ()
sendNodeIdentity ()
sendStateReport ()

sendTelemetryReport ()

paradrop.core.agent.wamp_session module

The WAMP session of the paradrop daemon

class WampSession (*args, **kwargs)
Bases: paradrop.base.cxbr.BaseSession

onChallenge (challenge)
Implements autobahn.wamp.interfaces.ISession.onChallenge ()

onConnect ()
Implements autobahn.wamp.interfaces.ISession.onConnect ()

onDisconnect ()
Implements autobahn.wamp.interfaces.ISession.onDisconnect ()

onJoin (**kwargs)
Implements autobahn.wamp.interfaces.ISession.onJoin ()

onLeave (details)
Implements autobahn.wamp.interfaces.ISession.onLeave ()

classmethod set_update_fetcher (update_fetcher)
update (pdid, data)

update_ fetcher = None

updatesPending (**kwargs)

ensure_unicode (s)

Module contents
paradrop.core.chute package
Submodules
paradrop.core.chute.chute module

class Chute (description=None, name=None, owner=None, state=’running’, version=None, con-
fig=NOTHING, environment=NOTHING, services=NOTHING, web=NOTHING,

cache=NOTHING)
Bases: object

12.1. Subpackages 151

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

This Chute class provides the internal representation of a Paradrop chute.

This class encapsulates the complex configuration details of a chute and provides a stable interface for the
execution path even as the chute specification language evolves over time.

The Chute class has minimal external dependencies, e.g. no dependency on the Docker API. Chute objects
should be immutable, since they describe a desired software state at a fixed point in time.

Args: name (str): The name of the chute. description (str): The human-friendly description of the chute. state

(str): Desired run state of the chute (“running”, “stopped”). version (str): The version of the chute. config
(dict): Configuration settings for the chute. environment (dict): Environment variables to set for all chute

services.
STATE_DISABLED = 'disabled'
STATE_FROZEN = 'frozen'
STATE_INVALID = 'invalid'
STATE_RUNNING = 'running'
STATE_STOPPED = 'stopped'

add_service (service)
Add a service to the chute.

create_specification()
Create a new chute specification from the existing chute.

This is a completely clean copy of all information necessary to rebuild the Chute object. It should contain
only primitive types, which can easily be serialized as JSON or YAML.

getCache (key)
Get a value from the cache or None if it does not exist.

getCacheContents ()
Get the contents of the cache as a dictionary.

getConfiguration ()
Get the chute’s configuration object.

getHostConfig ()
Get the chute’s host_config options for Docker.

Returns an empty dictionary if there is no host_config setting.

getWebPort ()
Get the port configured for the chute’s web server.

Returns port (int) or None if no port is configured.

get_default_service ()
Get one of the chute’s services designated as the default one.

This is more for convenience with existing API functions where the caller did not need to specify a service
because prior to 0.12.0, chutes could only have one Docker container. We use some heuristics such as the
service’s name is “main” to identify one of the services as the default.

get_environment ()
Get the chute environment variables.

These are defined by the developer or administrator and passed to all services that belong to the chute.

get_owner ()
Get the name of the user who owns this installed chute.

152

Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

get_service (name)
Get a service by name.

get_services ()
Get a list of services installed by this chute.

get_web_port_and_service ()
Get the port and Service object that provides this chutes web service.

Returns a tuple containing the port number and Service object. Both values will be None if a web service
is not configured.

inherit_ attributes (other)
Inherit attributes from another version of the chute.

If any settings are None or missing in this chute but present in the other version, they will be copied over.
The return value is a dictionary containing changes that were applied.

isRunning ()
Check if the chute is supposed to be running.

isValid ()
Return True only if the Chute object we have has all the proper things defined to be in a valid state.

setCache (key, value)
Set a value in the cache.

Deprecated: Most of the cache functionality has been moved to the Update object because they are values
that are used as temporary storage between one update step and the following steps. However, there
are a few instances of cache values that we do still read from chute storage. Any calls to the getCache
method throughout the project are still depending on this functionality, so we have corresponding calls to
setCache that ensure the required information is present in the chute cache and not just in the update cache.
Eventually, we should remove this dependency either by using a less stateful design or by formalizing the
process for storing persistent chute state, such as the networkInterfaces list.

updateCache (other)
Update the chute cache from another dictionary.

paradrop.core.chute.chute_storage module

class ChuteStorage (filename=None, save_timer=0)
Bases: paradrop.lib.utils.pd _storage.PDStorage

ChuteStorage class.
This class holds onto the list of Chutes on this AP.
It implements the PDStorage class which allows us to save the chuteList to disk transparently

attrSaveable ()
Returns True if we should save the ChuteList, otherwise False.

chutelist = {}
clearChuteStorage ()

deleteChute (ch)
Deletes a chute from the chute storage. Can be sent the chute object, or the chute name.

getAttr ()
Get our attr (as class variable for all to see)

12.1. Subpackages 153

paradrop Documentation, Release 0.13.2

getChute (name)
Returns a reference to a chute we have in our cache, or None.

getChutelist ()
Return a list of the names of the chutes we know of.

classmethod get_chute (name)

saveChute (ch)
Saves the chute provided in our internal chuteList. Also since we just received a new chute to hold onto
we should save our ChuteList to disk.

setAttr (artr)
Save our attr however we want (as class variable for all to see)

paradrop.core.chute.restart module

Contains the functions required to restart chutes properly on power cycle of device. Checks with pdconfd to make sure
it was able to properly bring up all interfaces before starting chutes.

reloadChutes ()
Get update objects to chutes that should be running at startup.

This function is called to restart any chutes that were running prior to the system being restarted. It waits for
pdconfd to come up and report whether or not it failed to bring up any of the interfaces that existed before
the power cycle. If pdconfd indicates something failed we then force a stop update in order to bring down all
interfaces associated with that chute and mark it with a warning. If the stop fails we mark the chute with a
warning manually and change its state to stopped and save to storage this isn’t great as it could mean our system
still has interfaces up associated with that chute. If pdconfd doesn’t report failure we attempt to start the chute
and if this fails we trust the abort process to restore the system to a consistent state and we manually mark the
chute as stopped and add a warning to it.

Returns (list) A list of UpdateChute objects that should be run before accepting new updates.

updateStatus (update)
This function is a callback for the updates we do upon restarting the system. It checks whether or not the update
completed successfully and if not it changes the state of the chute to stopped and adds a warning. :param update:
The update object containing information about the chute that was created and whether it was successful or not.
:type update: obj :returns: None

Module contents
paradrop.core.config package
Submodules
paradrop.core.config.airshark module

class AirsharkInterfaceManager
Bases: object

add_observer (observer)
interface_available ()

remove_observer (observer)

154 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

reset_interface ()
set_interface (interface)

configure (update)
Configure an Airshark interface.

paradrop.core.config.configservice module

configservice module: This module is responsible for “poking” the proper host OS services to change the host OS
config. This would include things like changing the networking, DHCP server settings, wifi, etc..

reloadAll (update)
Reload pdconf configuration files.

reload_placeholder (update)
This function successfully does nothing.

It serves as a placeholder so that we can attach an abort function to a specific point in the update pipeline.

paradrop.core.config.devices module

Detect physical devices that can be used by chutes.

This module detects physical devices (for now just network interfaces) that can be used by chutes. This includes WAN
interfaces for Internet connectivity and WiFi interfaces which can host APs.

It also makes sure certain entries exist in the system UCI files for these devices, for example “wifi-device” sections.
These are shared between chutes, so they only need to be added when missing.

class SysReader (phy)
Bases: object

PCI_BUS_ID = <_sre.SRE_Pattern object>
USB_BUS_ID = <_sre.SRE_Pattern object>

getDevicelId (default="7777")
Return the device ID for the device.

This is a four-digit hexadecimal number. For example, our Qualcomm 802.11n chips have device ID 002a.

getSlotName (default="7772")
Return the PCI/USB slot name for the device.

Example: “pci/0000:04:00.0” or “usb/1-1:1.0”

getVendorId (default="77??")
Return the vendor ID for the device.

This is a four-digit hexadecimal number. For example, our Qualcomm 802.11n chips have vendor ID 168c.

read_uevent ()
Read the device uevent file and return the contents as a dictionary.

class UCIBuilder
Bases: object

UCIBuilder helps aggregate UCI configuration sections for writing to files.

FILES = ['dhcp', 'network', 'firewall', 'wireless', 'qos']

12.1. Subpackages 155

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

add (file_, type_, options, name=None)
Add a new configuration section.

getSections (file_)
Get sections associated with a single file.

Returns: list of tuples, [(config, options)]

write ()
Write all of the configuration sections to files.

checkSystemDevices (update)
Check whether expected devices are present.

This may reboot the machine if devices are missing and the host config is set to do that.

detectSystemDevices ()
Detect devices on the system.

The result is three lists stored in a dictionary. The three lists are indexed by ‘wan’, ‘wifi’, and ‘lan’. Other
devices may be supported by adding additional lists.

Within each list, a device is represented by a dictionary. For all devices, the ‘name’ and ‘mac’ fields are defined.
For WiFi devices, the ‘phy’ is defined in addition. Later, we may fill in more device information (e.g. what
channels a WiFi card supports).

flushWirelessInterfaces (phy)
Remove all virtual interfaces associated with a wireless device.

This should be used before giving a chute exclusive access to a device (e.g. monitor mode), so that it does not
inherit unexpected interfaces.

getMACAddress (ifname)
getPhyMACAddress (phy)

getSystemDevices (update)
Detect devices on the system.

Store device information in cache key “networkDevices” as well as “networkDevicesByName”.
getWirelessPhyName (ifname)

get_hardware_serial ()
Get hardware serial number.

The most reliable way we have that works across many hardware platforms is to check the ethO MAC address.
Returns a numeric serial number.

get_machine_id()
Return unique machine identifier.

This is software-based but fairly standardized from the /etc/machine-id file. We can potentially rely on this for
uniquely identifying a node.

handleMissingWiFi (hostConfig)
Take appropriate action in response to missing WiFi devices.

Depending on the host configuration, we may either emit a warning or reboot the system.

isvVirtual (ifname)
Test if an interface is a virtual one.

FIXME: This just tests for the presence of certain strings in the interface name, so it is not very robust.

156 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

isWAN (ifname)
Test if an interface is a WAN interface.

isWireless (ifname)
Test if an interface is a wireless device.

listSystemDevices ()
Detect devices on the system.

The result is a single list of dictionaries, each containing information about a network device.
listWiFiDevices ()
readHostconfigVlan (vianlnterfaces, builder)
readHostconfigWifi (wifi, networkDevices, builder)
readHostconfigWifiInterfaces (wifilnterfaces, networkDevices, builder)
readSysFile (path)

resetWirelessDevice (phy, primary_interface)
Reset a wireless device’s interfaces to clean state.

This will rename, delete, or add an interface as necessary to make sure only the primary interface exists, e.g.
“wlan0” for a wireless device, e.g. phyO.

resolveWirelessDevRef (name, networkDevices)
Resolve a WiFi device reference (wlanO, phy0, 00:11:22:33:44:55, etc.) to the name of the device section as
used by pdconf (WifiXXXXXXXXXXXX).

Unambiguous naming is preferred going forward (either wifiXX or the MAC address), but to maintain backward
compatibility, we attempt to resolve either wlanX or phyX to the MAC address of the device that currently uses
that name.

select_brlan_address (hostConfig)
Select IP address and netmask to use for LAN bridge.

Behavior depends on the proto field, which can either be ‘auto’ or ‘static’. When proto is set to ‘auto’, we check
the WAN interface address and choose either 10.0.0.0 or 192.168.0.1 to avoid conflict. Otherwise, when proto
is set to ‘static’, we use the specified address.

setConfig (chuteName, sections, filepath)

setSystemDevices (update)
Initialize system configuration files.

This section should only be run for host configuration updates.

Creates basic sections that all chutes require such as the “wan” interface.

paradrop.core.config.dhcp module

getVirtDHCPSettings (update)
Looks at the runtime rules the developer defined to see if they want a dhcp server. If so it generates the data and
stores it into the chute cache key:virtDHCPSettings.

revert_dhcp_settings (update)

setVirtDHCPSettings (update)
Takes a list of tuples (config, opts) and saves it to the dhcp config file.

12.1. Subpackages 157

paradrop Documentation, Release 0.13.2

paradrop.core.config.dockerconfig module

dockerconfig module: This module contains all of the knowledge of how to take internal pdfcd representation of
configurations of chutes and translate them into specifically what docker needs to function properly, whether
that be in the form of dockerfiles or the HostConfig JSON object known at init time of the chute.

abortCreateVolumeDirs (update)

createVolumeDirs (update)
Create directories required by the chute.

generateToken (bits=128)

getVirtPreamble (update)
Prepare various settings for Docker containers.

paradrop.core.config.firewall module

findMatchingInterface (iface_name, interfaces)
Search an interface list for one matching a given name.

iface_name can contain shell-style wildcards (* and ?).

getDeveloperFirewallRules (update)
Generate other firewall rules requested by the developer such as redirects. The object returned is a list of tuples
(config, options).

getOSFirewallRules (update)
There is a set of default things that must exist just for the chute to function at all, generate those here.

Stored in key: osFirewallRules
revert_os_firewall_rules (update)

setOSFirewallRules (update)
Takes a list of tuples (config, opts) and saves it to the firewall config file.

paradrop.core.config.haproxy module

This module is responsible for configuration haproxy.
generateConfigSections ()

reconfigureProxy (update)
Reconfigure haproxy with forwarding and redirect rules.

writeConfigFile (output)

paradrop.core.config.hostconfig module

The host configuration controls system settings of the host OS.
This module operates as follows:

1. The first time, we try to detect all devices and auto-generate a reasonable configuration, which we store to a
persistent file.

2. (TODO) We present the configuration to the owner sometime around provisioning or first chute creation and allow
him to change settings.

158 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

3. (TODO) We have some kind of update operation that can manipulate settings.

generateHostConfig (devices)
Scan for devices on the machine and generate a working configuration.

getHostConfig (update)
Load host configuration.

Read device information from networkDevices. Store host configuration in hostConfig.

load (path=None)
Load host configuration.

Tries to load host configuration from persistent file. If that does not work, it will try to automatically generate a
working configuration.

Returns a host config object on success or None on failure.

prepareHostConfig (devices=None, hostConfigPath=None, write=True)
Load an existing host configuration or generate one.

Tries to load host configuration from persistent file. If that does not work, it will try to automatically generate a
working configuration.

write: if True and host config was automatically generated, then write the new host config to a file.

revertHostConfig (update)
Restore host configuration from before update.

Uses oldHostConfig cache entry.

save (config, path=None)
Save host configuration.

May raise exception if unable to write the configuration file.

setHostConfig (update)
Write host configuration to persistent storage.

Read host configuration from hostConfig.

paradrop.core.config.network module

abortNetworkConfig (update)
Release resources claimed by chute network configuration.

chooseExternalIntf (update, iface)
chooseSubnet (update, cfg, iface)

fulfillDeviceRequest (update, cfg, devices)
Find a physical device that matches the requested device type.

Raises an exception if one cannot be found.

getExtraOptions (cfg)
Get dictionary of extra wifi-iface options that we are not interpreting but just passing on to pdconf.

getInterfaceAddress (update, name, cfg, iface)
Dynamically select IP address for the chute interface.

This function will use a subnet from the chute subnet pool and assign IP addresses to the external (in host) and
internal (in chute) interfaces.

12.1. Subpackages 159

paradrop Documentation, Release 0.13.2

The addresses are stored in the iface object.

getL3BridgeConfig (update)
Creates configuration sections for layer 3 bridging.

getNetworkConfig (update)
For the Chute provided, return the dict object of a 100% filled out configuration set of network configuration.
This would include determining what the IP addresses, interfaces names, etc. ..

Store configuration in networkInterfaces cache entry.
getNetworkConfigLan (update, name, cfg, iface)
getNetworkConfigVlan (update, name, cfg, iface)
getNetworkConfigWifi (update, name, cfg, iface)

getOSNetworkConfig (update)
Takes the network interface obj created by NetworkManager.getNetworkConfiguration and returns a properly
formatted object to be passed to the UCIConfig class. The object returned is a list of tuples (config, options).

getWifiKeySettings (cfg, iface)
Read encryption settings from cfg and transfer them to iface.

get_current_phy conf (update, device_id)
Lookup current configuration for a network device.

This includes information such as the Wi-Fi channel.
Returns a dictionary, which may be empty if no configuration was found.

reclaimNetworkResources (chute)
Reclaim network resources for a previously running chute.

This function only applies to the special case in which pd starts up and loads a list of chutes that were running.
This function marks their IP addresses and interface names as taken so that new chutes will not use the same
values.

revert_13_bridge_ config (update)
revert_os_network_config (update)

satisfies_requirements (obj, requirements)
Checks that an object satifies given requirements.

Every key-value pair in the requirements object must be present in the target object for it to be considered
satisfied.

Returns True/False.

select_chute_subnet_pool (host_config)
Select IP subnet to use as pool for chutes.

Behavior depends on whether a static subnet is configured or auto configuration is requested. If the chuteSub-
netPool option is set to ‘auto’, then we check the WAN interface address and choose either 10.128.0.0/9 or
192.168.128.0/17 to avoid conflict. Otherwise, we used the specified subnet.

setL3BridgeConfig (update)
Apply configuration for layer 3 bridging.

setOSNetworkConfig (update)
Takes a list of tuples (config, opts) and saves it to the network config file.

split_interface_type (itype)

160 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

paradrop.core.config.osconfig module

osconfig module: This module is in charge of changing configuration files for pdfcd on the host OS. This relates to
things like network, dhcp, wifi, firewall changes. Pdfcd should be able to make simple abstracted calls into this
module so that if we need to change what type of OS config we need to support only this module would change.

revertConfig (update, theType)
Tell the UCI module to revert changes to the old state of the chute.

paradrop.core.config.power module

reboot (update)
Reboot the node.

shutdown (update)
Power down the node.

paradrop.core.config.reservations module

Module for checking resource reservations by chutes.

One idea motivating this design is to reduce the amount of state in memory for resource reservations. We have the
chute list, which contains information about what devices the chute is using. If we also maintain a separate list of
devices used by chutes, we need to keep them synchronized. This becomes messy when a chute fails to install or
uninstall correctly. The getDeviceReservations function iterates over the chute list and returns an up-to-date view of
device usage. This can be called as needed.

class DeviceReservations
Bases: object

add (chute, dtype, mode=None)

count (dtype=None, mode=None)
Return the number of reservations matching the given criteria.

None is used as a wildcard, so if no arguments are passed, the count returned is the total number of
reservations.

class InterfaceReservationSet
Bases: object

add (interface)

class SubnetReservationSet
Bases: object

add (subnet)

getDeviceReservations (exclude=None)
Produce a dictionary mapping device names to DeviceReservations objects that describe the current usage of
the device.

The returned type is a defaultdict, so there is no need to check if a key exists before accessing it.
exclude: name of chute whose device reservations should be excluded

getInterfaceReservations (exclude=None)
Get current set of interface reservations.

Returns an instance of InterfaceReservationSet.

12.1. Subpackages 161

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

exclude: name of chute whose interfaces should be excluded

getReservations (update)
Get device and resource reservations claimed by other users.

getSubnetReservations (exclude=None)
Get current set of subnet reservations.

Returns an instance of SubnetReservationSet.

exclude: name of chute whose reservations should be excluded

paradrop.core.config.resource module

computeResourceAllocation (chutes)

getResourceAllocation (update)
Allocate compute resources for chutes.

Sets cache variables “newResourceAllocation” and “oldResourceAllocation”.

paradrop.core.config.services module

Configure optional additional services such as telemetry.

configure_telemetry (update)

paradrop.core.config.shap module

updateSnap (update)

paradrop.core.config.state module

removeAllChutes (update)
revertChute (update)

saveChute (update)
Save information about the chute to the filesystem.

paradrop.core.config.uciutils module

restoreConfigFile (chute, configname)
Restore a system config file from backup.

This can only be used during a chute update operation to revert changes that were made during that update
operation.

9 G

configname: name of configuration file (“network”, “wireless”, etc.)

setConfig (update, cacheKeys, filepath)
Helper function used to modify config file of each various setting in /etc/config/ Returns:

True: if it modified a file False: if it did NOT cause any modifications

Raises exception if an error occurs.

162 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

paradrop.core.config.wifi module

getOSWirelessConfig (update)
Read settings from networkInterfaces for wireless interfaces. Store wireless configuration settings in osWire-
lessConfig.

revert_os_wireless_config (update)

setOSWirelessConfig (update)
Write settings from osWirelessConfig out to UCI files.

paradrop.core.config.zerotier module

configure (update)

getAddress ()
Return the zerotier address for this device or None if unavailable.

get_auth_token ()
Return the zerotier auth token for accessing its API or None if unavailable.

get_networks (ignore_error=False)
Get list of active ZeroTier networks.

manage_network (nwid, action="join’)
Join or leave a ZeroTier network.

nwid: ZeroTier network ID, e.g. “e5cd7a9%e1c8a5e83” action: either “join” or “leave”

wait_for_zerotier (max_delay=120)
Wait for ZeroTier to start up and create the authtoken file.

Module contents

paradrop.core.container package

Submodules
paradrop.core.container.chutecontainer module

class ChuteContainer (name, docker _url="unix://var/run/docker.sock’)
Bases: object

Class for accessing information about a chute’s container.

getID ()
Look up the container ID as used by Docker.

getIP ()
Look up the IP address assigned to the container.

getPID ()
Look up the PID of the container, if running.

getPortConfiguration (port, protocol="tcp’)
Look up network port configuration. This tells us if a port in the host is bound to a port inside the container.

Returns a list, typically with zero or one elements.

12.1. Subpackages 163

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

Example:
[{ “HostIp”: “0.0.0.0”, “HostPort™: “32768”

}

getStatus ()
Return the status of the container (running, exited, paused).

Returns “missing” if the chute does not exist.

inspect ()
Return the full container status from Docker.

isRunning ()
Check if container is running.

Returns True/False; returns False if the container does not exist.

paradrop.core.container.dockerapi module

Functions associated with deploying and cleaning up docker containers.

build_host_config (update, service)
Build the host_config dict for a docker container based on the passed in update.

Parameters chute (ob j) — The chute object containing information about the chute.
Returns (dict) The host_config dict which docker needs in order to create the container.

call_in_netns (service, env, command, onerror="raise’, pid=None)
Call command within a service’s namespace.

command: should be a list of strings. onerror: should be “raise” or “ignore”
call_retry (cmd, env, delay=3, tries=3)

check_image (update, service)
Check if image exists.

cleanup_net_interfaces (update)
Cleanup special interfaces when bringing down a container.

This applies to monitor mode interfaces, which need to be renamed before they come back to the host network,
e.g. “mon0” inside the container should be renamed to the appropriate “wlanX” before the container exits.

create_bridge (update)
Create a user-defined bridge network for the chute.

getBridgeGateway ()
Look up the gateway IP address for the docker bridge network.

This is the dockerQ IP address; it is the IP address of the host from the chute’s perspective.

getPortList (chute)
Get a list of ports to expose in the format expected by create_container.

Uses the port binding dictionary from the chute host_config section. The keys are expected to be integers or
strings in one of the following formats: “port” or “port/protocol”.

Example: port_bindings = {
“I111/udp™: 1111, “2222: 2222
} getPortList returns [(1111, ‘udp’), (2222, ‘tcp’)]

164 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

prepare_environment (update, service)
Prepare environment variables for a chute container.

prepare_image (update, service)
Prepare a Docker image for execution.

This is usually the longest operation during a chute installation, so instead of running this step in the update
thread, we spin off a worker thread and return a Deferred. This will suspend processing of the current update
until the worker thread finishes.

prepare_port_bindings (service)

removeAllContainers (update)
Remove all containers on the system. This should only be used as part of a factory reset mechanism.

Returns None

remove_bridge (update)
Remove the bridge network associated with the chute.

remove_container (update, service)
Remove a service’s container.

remove_image (update, service)
Remove a Docker image.

restartChute (update)
Start a docker container based on the passed in update.

Parameters update (ob j)— The update object containing information about the chute.
Returns None
revertResourceAllocation (update)

setResourceAllocation (update)
Adjust compute resources assigned to chute containers.

setup_net_interfaces (update)
Link interfaces in the host to the internal interfaces in the Docker container.

The commands are based on the pipework script (https://github.com/jpetazzo/pipework).
Parameters chute — The chute object containing information about the chute.
Returns None

start_container (update, service)
Start running a service in a new container.

stopChute (update)
Stop a docker container based on the passed in update.

Parameters update (ob j)— The update object containing information about the chute.
Returns None

writeDockerConfig ()
Write options to Docker configuration.

Mainly, we want to tell Docker not to start containers automatically on system boot.

12.1. Subpackages 165

https://github.com/jpetazzo/pipework

paradrop Documentation, Release 0.13.2

paradrop.core.container.dockerfile module

This module generates a Dockerfile for use with light chutes.

class Dockerfile (service)
Bases: object

getBytesIO()
Geterate a Dockerfile and return as a BytesIO object.

getString()
Generate a Dockerfile as a multi-line string.

isvValid ()
Check if configuration is valid.

Returns a tuple (True/False, None or str).
readTemplate (language)
requiredFields = ['image', 'command']

writeFile (path)
Generate Dockerfile and write to a file.

get_target_image (requested)

get_target_machine ()

paradrop.core.container.downloader module

This module downloads a package from a given URL using one of potentially many different methods. We currently
support the github web API and simple HTTP(S). The github method is more developed and returns meta data about
the project (the commit hash and message), but support for other methods, e.g. download a tar file that was uploaded
to a web server, are not precluded.

Private downloads are supported with the HTTP Authorization header. For github, we need to use the github API to
request a token to access the owner’s private repository. That part is not implemented here.

class Downloader (url, user=None, secret=None, repo_owner=None, repo_name=None)
Bases: object

download ()
extract ()

fetch ()
Download the project.

Returns the full path to the temporary directory containing the project and a dictionary containing meta
data.

meta ()

class GitSSHDownloader (url, checkout="master’, **kwargs)
Bases: paradrop.core.container.downloader.Downloader

download ()
meta ()

class GithubDownloader (url, checkout="master’, **kwargs)
Bases: paradrop.core.container.downloader.Downloader

166 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

download ()

meta ()
Return repository meta data as a dictionary.

class WebDownloader (url, user=None, secret=None, repo_owner=None, repo_name=None)
Bases: paradrop.core.container.downloader.Downloader

download ()

meta ()
Return repository meta data as a dictionary.

downloader (url, user=None, secret=None, **kwargs)
Return an appropriate Downloader for the given URL.

This should be used in a “with ... as...” statement to perform cleanup on all exit cases.
Example: with downloader(“https://github.com/...”) as dl:

path, meta = dl.fetch() # do some work on the repo here

paradrop.core.container.log_provider module

Provides messages from container logs (STDOUT and STDERR).

class LogProvider (chute)
Bases: object

attach ()
Start listening for log messages.

Log messages in the queue will appear like the following: {

‘service’: ‘main’, ‘timestamp’: ‘2017-01-30T15:46:23.009397536Z°, ‘message’: ‘Something
happened’

}

detach ()
Stop listening for log messages.

After this is called, no additional messages will be added to the queue.
get_logs ()

monitor_logs (service_name, container_name, queue, tail=200)
Iterate over log messages from a container and add them to the queue for consumption. This function will block
and wait for new messages from the container. Use the queue to interface with async code.

tail: number of lines to retrieve from log history; the string “all” is also valid, but highly discouraged for
performance reasons.

Module contents
paradrop.core.plan package

Submodules

12.1. Subpackages 167

https://github.com/
https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

paradrop.core.plan.executionplan module

This module contains the methods required to generate and act upon execution plans.

An execution plan is a set of operations that must be performed to update a Chute from some old state into the new
state provided by the API server.

All plans that are generated are function pointers, as in no actual operations are performed during the generation
process.

abortPlans (update)
This function should be called if one of the Plan objects throws an Exception. It takes the PlanMap argument
and calls the getNextAbort function just like executePlans does with todoPlans. This dynamically generates an
abort plan list based on what plans were originally executed. Returns:

True in error : This is really bad False otherwise : we were able to restore system state back to before
the executeplans function was called

aggregatePlans (update)
Takes the PlanMap provided which can be a combination of changes for multiple different chutes and it puts
things into a sane order and removes duplicates where possible.

This keeps things like reloading networking from happening twice if 2 chutes make changes.
Returns: A new PlanMap that should be executed

executePlans (update)
Primary function that actually executes all the functions that were added to plans by all the exc modules. This
function can heavily modify the OS/files/etc.. so the return value is very important. Returns:

True in error : abortPlans function should be called False otherwise : everything is OK

generatePlans (update)
For an update object provided this function references the updateModuleList which lets all exc modules deter-
mine if they need to add functions to change the state of the system when new chutes are added to the OS.

Returns: True in error, as in we should stop with this update plan

paradrop.core.plan.hostconfig module

This module generates update plans for a host configuration operation. It is separate from the modules that generate
plans for chute operations because we only need to do a subset of the operations.

generatePlans (update)

paradrop.core.plan.name module

generatePlans (update)
This function looks at a diff of the current Chute (in @chuteStor) and the @newChute, then adds Plan() calls to
make the Chute match the @newChute.

Returns: True: abort the plan generation process

paradrop.core.plan.plangraph module

class Plan (func, *args)
Helper class to hold onto the actual plan data associated with each plan

168 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

class PlanMap (name)
This class helps build a dependency graph required to determine what steps are required to update a Chute from
a previous version of its configuration.

addMap (other)
Takes another PlanMap object and appends whatever the plans are into this plans object.

addPlans (priority, todoPlan, abortPlan=[])
Adds new Plan objects into the list of plans for this PlanMap.

Arguments: @priority : The priority number (1 is done first, 99 done last - see PRIORITYFLAGS section
at top of this file) @todoPlan : A tuple of (function, (args)), this is the function that completes the
actual task requested

the args can either be a single variable, a tuple of variables, or None.
@abortPlan [A tuple of (function, (args)) or a list of tuple or None.] This is what should be called
if a plan somewhere in the chain fails and we need to undo the work we did here - this function is

only called if a higher priority function fails (ie we were called, then something later on fails that
would cause us to undo everything we did to setup/change the Chute).

getNextAbort ()
Like an iterator function, it returns each element in the list of abort plans in order.

Returns: (function, args) : Each todo is returned just how the user first added it None : None is returned
when there are no more todo’s

getNextTodo ()
Like an iterator function, it returns each element in the list of plans in order.

Returns: (function, args) : Each todo is returned just how the user first added it None : None is returned
when there are no more todo’s

registerSkip (func)
Register this function as one to skip execution on, if provided it shouldn’t return the (func, args) tuple as a
result from the getNextTodo function.

sort ()
Sorts the plans based on priority.

paradrop.core.plan.resource module

generatePlans (update)
This function looks at a diff of the current Chute (in @chuteStor) and the @newChute, then adds Plan() calls to
make the Chute match the @newChute.

Returns: True: abort the plan generation process

paradrop.core.plan.router module

This module generates update plans for router operations such as factory reset.

generatePlans (update)

12.1. Subpackages 169

paradrop Documentation, Release 0.13.2

paradrop.core.plan.runtime module

generatePlans (update)
This function looks at a diff of the current Chute (in @chuteStor) and the @newChute, then adds Plan() calls to
make the Chute match the @newChute.

Returns: True: abort the plan generation process

paradrop.core.plan.snap module

This module generates update plans for a snap operation.

generatePlans (update)

paradrop.core.plan.state module

generatePlans (update)
This function looks at a diff of the current Chute (in @chuteStor) and the @newChute, then adds Plan() calls to
make the Chute match the @newChute.

Returns: True: abort the plan generation process

generate_service_plans (update)
Generate plans that depend on the services configured for the chute.

This needs to happen after the chute configuration has been parsed.

validate_change (update)
Check if the update is a valid change.

paradrop.core.plan.struct module

generatePlans (update)
This function looks at a diff of the current Chute (in @chuteStor) and the @newChute, then adds Plan() calls to
make the Chute match the @newChute.

Returns: True: abort the plan generation process

paradrop.core.plan.traffic module

generatePlans (update)
This function looks at a diff of the current Chute (in @chuteStor) and the @newChute, then adds Plan() calls to
make the Chute match the @newChute.

Returns: True: abort the plan generation process

Module contents
paradrop.core.system package

Submodules

170 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

paradrop.core.system.system_info module

Get system information

getDMI ()
Read hardware information from DMI.

This function attempts to read from known files in /sys/class/dmi/id/. If any are missing or an error occurs, those
fields will be omitted from the result.

Returns: a dictionary with fields such as bios_version and product_serial.

getOSVersion ()
Return a string identifying the host OS.

getPackageVersion (name)
Get a python package version.

Returns: a string or None

paradrop.core.system.system_status module

Get system running status including CPU load, memory usage, network traffic.

class SystemStatus
Bases: object

INCLUDED_PARTITIONS = set (['/writable', '/'])
classmethod getNetworkInfo ()
classmethod getProcessInfo (pid)

getStatus (max_age=0.8)
Get current system status.

max_age: maximum tolerable age of cached status information. Set to None to force a refresh regardless
of cache age.

Returns a dictionary with fields ‘cpu_load’, ‘mem’, ‘disk’, and ‘network’.
classmethod getSystemInfo ()
refreshCpuload ()
refreshDiskInfo ()
refreshMemoryInfo ()

refreshNetworkTraffic ()

Module contents

paradrop.core.update package

Submodules
paradrop.core.update.update_fetcher module

Fetch new updates from the pdserver and apply the updates

12.1. Subpackages 171

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

class UpdateFetcher (update_manager)
Bases: object

pull_update (**kwargs)
Start updates by polling the server for the latest updates.

This is the only method that needs to be called from outside. The rest are triggered asynchronously.
Call chain: pull_update -> _updates_received -> _update_complete
_auto: Set to True when called by the scheduled LoopingCall.

start_long poll (**kwargs)

start_polling ()

paradrop.core.update.update_manager module

class UpdateManager (reactor)
This class is in charge of making the configuration changes required on the chutes. It utilizes the ChuteStorage
class to hold onto the chute data.

Use @updateChutes to make the configuration changes on the AP. This function is thread-safe, this class
will only call one update set at a time. All others are held in a queue until the last update is complete.

add_provision_update (hostconfig_patch, zerotier_networks)

add_update (**update)
MUTEX: updateLock Take the list of Chutes and push the list into a queue object, this object will then call
the real update function in another thread so the function that called us is not blocked.

We take a callable responseFunction to call, when we are done with this update we should call it.

assign_change_id ()
Get a unique change ID for an update.

This should be used to set the change_id field in an update object.

clear_update_list ()
MUTEX: updateLock Clears all updates from list (new array).

find_change (change_id)
Search active and queued changes for the requested change.

Returns an Update object or None.

paradrop.core.update.update_object module

This holds onto the UpdateObject class. It allows us to easily abstract away different update types and provide a
uniform way to interpret the results through a set of basic actionable functions.

class UpdateChute (obj, reuse_existing=False)
Bases: paradrop.core.update.update_object.UpdateOb ject

Updates specifically tailored to chute actions like create, delete, etc. ..

has_chute_build()
Check whether this update involves building a chute.

updateModuleList = [<module 'paradrop.core.plan.name' from '/home/docs/checkouts/readt!

172 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

class UpdateObject (0bj)
Bases: object

The base UpdateObject class, covers a few basic methods but otherwise all the intelligence exists in the inherited
classes.

All update information passed by the API server is contained as variables of this class such as up-
date.updateType, update.updateClass, etc. ..

By default, the following variables should be utilized: responses : an array of messages any module can
choose to append warnings or errors to

failure [the module that chose to fail this update can set a string message to return] : to the user in the
failure variable. It should be very clear as to why the : failure occurred, but if the user wants more
information they may find it : in the responses variable which may contain debug information, etc. ..

add_message_observer (observer)

cache_get (key, default=None)
Get a value from the cache or the default value if it does not exist.

cache_set (key, value)
Set a value in the cache.

complete (**kwargs)
Signal to the API server that any action we need to perform is complete and the API server can finish its
connection with the client that initiated the API request.

execute ()
The function that actually walks through the main process required to create the chute. It follows the
executeplan module through the paces of:

1. Generate the plans for each plan module
2. Prioritize the plans
3. Execute the plans

If at any point we fail then this function will directly take care of completing the update process with an
error state and will close the API connection.

has_chute_build()
Check whether this update involves building a chute.

progress (message)
remove_message_observer (observer)

started ()
This function should be called when the updated object is dequeued and execution is about to begin.

Sends a notification to the pdserver if this is a tracked update.
updateModulelist = []

class UpdateRouter (0bj)
Bases: paradrop.core.update.update_object.UpdateOb ject

Updates specifically tailored to router configuration.

updateModuleList = [<module 'paradrop.core.plan.hostconfig' from '/home/docs/checkouts

class UpdateSnap (0bj)
Bases: paradrop.core.update.update_object.UpdateOb ject

Updates specifically tailored to installing snaps.

12.1. Subpackages 173

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

updateModuleList = [<module 'paradrop.core.plan.snap' from '/home/docs/checkouts/readt!

parse (0bj)
Determines the update type and returns the proper class.

Module contents

Module contents
12.1.6 paradrop.lib package

Subpackages

paradrop.lib.misc package
Submodules
paradrop.lib.misc.pdinstall module

sendCommand (command, data)
Send a command to the pdinstall service.

Commands: install - Install snaps from a file path or http(s) URL.
Required data fields: sources - List with at least one snap file path or URL. The snaps
are installed in order until one succeeds or all fail.

Returns True/False for success. Currently, we cannot check whether the call succeeded, only whether it was
delived. A return value of False means we could not deliver the command to pdinstall.

paradrop.lib.misc.procmon module

The ProcessMonitor class ensures that a service is running and that its pid file is consistent.

This addresses an issue we have had with Docker on Ubuntu Snappy, where its pid file sometimes persists and prevents
the service from starting.

class ProcessMonitor (service, cmdstring=None, pidfile=None, action="restart’)
Bases: object

allowedActions = set (['reboot', 'restart'])

check ()
Check that the service is running and consistent with pid file(s).

Returns True or False.

ensureReady (delay=>5, tries=3)
Look through checking and restarting the service until it is ready or the maximum number of tries has been
reached.

delay: time delay (seconds) between retries. tries: maximum number of restart-wait-check cycles.

restart ()
Restart the service.

174 Chapter 12. Source Code Reference

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

paradrop.lib.misc.resopt module

Resource optimization functions.

allocate (reservations, total=1.0)
Allocate resources among slices with specified and unspecified reservations.

Returns a new list of values with the following properties: - Every value is >= the corresponding input value. -
The result sums to fotal.

Examples: allocate([0.25, None, None]) -> [0.5, 0.25, 0.25] allocate([0.4, None, None]) -> [0.6, 0.2, 0.2]
allocate([0.2, 0.2, 0.2]) -> [0.33, 0.33, 0.33] allocate([None, None, None]) -> [0.33, 0.33, 0.33] allocate([0.5,
0.5, 0.5]) -> ERROR

paradrop.lib.misc.snapd module

class SnapdClient (logging=True, wait_async=False)
Bases: object

Client for interacting with the snapd API to manage installed snaps.

connect (plug_snap=None, plug=None, slot_snap="core’, slot=None)
Connect an interface.

get_change (change_id)
Get the current status of a change.

installSnap (snapName)
Install a snap from the store.

listSnaps ()
Get a list of installed snaps.

updateSnap (snapName, data)
Post an update to a snap.

Valid actions are: install, refresh, remove, revert, enable, disable.

99, ¢

Example: updateSnap(“paradrop-daemon”, {“action”: “refresh”}

paradrop.lib.misc.ssh_keys module

addAuthorizedKey (key, user="paradrop’)
getAuthorizedKeys (user="paradrop’)

writeAuthorizedKeys (keys, user="paradrop’)

Module contents
paradrop.lib.utils package

Submodules

12.1. Subpackages 175

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

paradrop.lib.utils.addresses module

checkPhyExists (radioid)
Check if this chute exists at all, a directory /sys/class/ieee80211/phyX must exist.

getGatewayIntf (ch)
Looks at the key:networkInterfaces for the chute and determines what the gateway should be including the IP
address and the internal interface name.

Returns: A tuple (gatewaylIP, gatewaylnterface) None if networkInterfaces doesn’t exist or there is an error

getInternalIntflist (ch)
Takes a chute object and uses the key:networkInterfaces to return a list of the internal network interfaces that
will exist in the chute (e.g., ethO, ethl, ...)

Returns: A list of interface names None if networkInterfaces doesn’t exist or there is an error
getSubnet (ipaddr, netmask)

getWANIntf (ch)
Looks at the key:networkInterfaces for the chute and finds the WAN interface.

Returns: The dict from networkInterfaces None

incIpaddr (ipaddr, inc=1)
Takes a quad dot format IP address string and adds the @inc value to it by converting it to a number.

Returns: Incremented quad dot IP string or None if error

isIpAvailable (ipaddr, chuteStor, name)
Make sure this IP address is available.

Checks the IP addresses of all zones on all other chutes, makes sure subnets are not the same.

isIpValid (ipaddr)
Return True if Valid, otherwise False.

isStaticIpAvailable (ipaddr, chuteStor, name)
Make sure this static IP address is available.

Checks the IP addresses of all zones on all other chutes, makes sure not equal.

isWifiSSIDAvailable (ssid, chuteStor, name)
Make sure this SSID is available.

maxIpaddr (ipaddr, netmask)
Takes a quad dot format IP address string and makes it the largest valid value still in the same subnet.

Returns: Max quad dot IP string or None if error

paradrop.lib.utils.datastruct module

Utilities for reading from data structures.

getValue (struct, path, default=None)
Read a value from the data structure.

Arguments: struct can comprise one or more levels of dicts and lists. path should be a string using dots to
separate levels. default will be returned if the path cannot be traced.

Example: getValue({‘a’: [1, 2, 3]}, “a.1”) -> 2 getValue({ ‘a’: [1, 2, 3]}, “a.3”) -> None

176 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

paradrop.lib.utils.pd_storage module

class PDStorage (filename, saveTimer)
Bases: object

ParaDropStorage class.

This class is designed to be implemented by other classes. Its purpose is to make whatever data is considered
important persistant to disk.

The implementer can override functions in order to implement this class: getAttr() : Get the attr we need
to save to disk setAttr() : Set the attr we got from disk importAttr(): Takes a payload and returns the
properly formatted data exportAttr(): Takes the data and returns a payload attrSaveable(): Returns True if
we should save this attr

attrSaveable ()
THIS SHOULD BE OVERRIDEN BY THE IMPLEMENTER.

exportAttr (data)
By default do nothing, but expect that this function could be overwritten

importAttr (pyld)
By default do nothing, but expect that this function could be overwritten

loadFromDisk ()
Attempts to load the data from disk. Returns True if success, False otherwise.

saveToDisk ()
Saves the data to disk.

paradrop.lib.utils.pdos module

basename (x)
copy (a, b)

copytree (a, b)
shutil’s copytree is dumb so use distutils.

exists (p)

fixpath (p)
This function is required because if we need to pass a path to something like tarfile, we cannot overwrite the
function to fix the path, so we need to expose it somehow.

getFileType (f)
getMountCmd ()

isMount (mnt)
This function checks if @mnt is actually mounted.

isdir (a)
isfile (a)
ismount (p)
listdir (p)
mkdir (p)

move (a, b)

12.1. Subpackages 177

https://docs.python.org/3/library/functions.html#object

paradrop Documentation, Release 0.13.2

open (p, mode)

oscall (cmd, get=False)
This function performs a OS subprocess call. All output is thrown away unless an error has occured or if @get
is True Arguments:

@cmd: the string command to run [get] : True means return (stdout, stderr)
Returns: None if not @get and no error (stdout, retcode, stderr) if @get or yes error
readFile (filename, array=True, delimiter="\n")
Reads in a file, the contents is NOT expected to be binary. Arguments:
@filename: absolute path to file @array : optional: return as array if true, return as string if False
@delimiter: optional: if returning as a string, this str specifies what to use to join the lines
Returns: A list of strings, separated by newlines None: if the file doesn’t exist
read_sys_file (path, default=None)
Read a file and return the contents as a string.
This is best suited for files that store a single line of text such as files in /sys/.
Returns the default value if an error occurs.
remove (path, suppressNotFound=False)
symlink (a, b)
unlink (p)

write (filename, data, mode="w’)
Writes out a config file to the specified location.

writeFile (filename, line, mode='a’)
Adds the following cfg (either str or list(str)) to this Chute’s current config file (just stored locally, not written to
file.

paradrop.lib.utils.pdosq module

Quiet pdos module. Implements utility OS operations without relying on the output module. Therefore, this module
can be used by output without circular dependency.

makedirs (p)
Recursive directory creation (like mkdir -p). Returns True if the path is successfully created, False if it existed
already, and raises an OSError on other error conditions.

read_yaml_file (path, default=None)
Read the contents of a file and interpret as YAML.

default: return value if the file cannot be read.

safe_remove (path)
Remove a file or silently pass if the file does not exist.

This function has the same effect as os.remove but suppresses the error if the file did not exist. Notably, it must
not be used to remove directories.

Returns True if a file was removed or False if no file was removed.

178 Chapter 12. Source Code Reference

paradrop Documentation, Release 0.13.2

paradrop.lib.utils.uci module

class UCIConfig (filepath)

Wrapper around the UCI configuration files. These files are found under /etc/config/, and are used by Open-
Wrt to keep track of configuration for modules typically found in /etc/init.d/

The modules of interest and with current support are:
* firewall
* network
* wireless

* qos
* This class should work with any UCI module but ALL others are UNTESTED!

New configuration settings can be added to the UCI file via addConfig().
Each UCI config file is expected to contain the following syntax:
config keyA [valueA] option keyl valuel ... list key2 valuel list key2 value2 ... list key3 valuel
list key3 value2
Based on the UCI file above, the config syntax would look like the following: config is a list of tuples, con-
taining 2 dict objects in each tuple:

* tuple[0] describes the first line (config keyA [valueA]) {‘type’: keyA, ‘name’: valueA}
The value parameter is optional and if missing, then the ‘name’ key is also missing (rather
than set to None).

* tuple[1] describes the options associated with the settings (both ‘option’ and ‘list’ lines)
{‘keyl’: ‘valuel’, ...}

If a list is present, it looks like the following:
{ ..., ‘key2’: [valuel, value2, ...], ‘key3’: [valuel, value2, ...]
}

So for the example above, the full config definition would look like: C = {‘type’: ‘keyA’,
‘name’: ‘valueA’} O = {‘keyl’: ‘valuel’, ‘key2’: [‘valuel’, ‘value2’], ‘key3’: [‘valuel’,
‘value2’]} config = [(C, O)]

addConfig (config, options)
Adds the tuple to our config.

addConfigs (configs)
Adds a list of tuples to our config

backup (backupToken)
Puts a backup of this config to the location specified in @backupPath.

delConfig (config, options)
Finds a match to the config input and removes it from the internal config data structure.

delConfigs (configs)
Adds a list of tuples to our config

existsConfig (config, options)
Tests if the (config, options) is in the current config file.

12.1. Subpackages 179

paradrop Documentation, Release 0.13.2

getChuteConfigs (internalid)

getConfig (config)
Returns a list of call configs with the given title

getConfigIgnoreComments (config)
Returns a list of call configs with the given title. Comments are ignored.

readConfig ()
Reads in the config file.

restore (backupToken, saveBackup=True)
Replaces real file (at /etc/config/) with backup copy from /tmp/- @backupToken location.

Arguments: backupToken: The backup token appended at the end of the backup path saveBackup : A
flag to keep a backup copy or delete it (default is keep backup)

save (backupToken="paradrop’, internalid=None)
Saves out the file in the proper format.

Arguments:

[backupPath] [Save a backup copy of the UCI file to the path provided.] Should be a token name
like ‘backup’, it gets appended with a hyphen.

chuteConfigsMatch (chutePre, chutePost)
Takes two lists of objects, and returns whether or not they are identical.

getLineParts (line)
Split the UCI line into its whitespace-separated parts.

Returns a list of strings, with apostrophes removed.
getSystemConfigDir ()

getSystemPath (filename)
Get the path to the system configuration file.

This function also attempts to create the configuration directory if it does not exist.
Typical filenames: network, wireless, qos, firewall, dhcp, etc.

isMatch (a, b)

isMatchIgnoreComments (a, b)

singleConfigMatches (q, b)

stringify (a)
Recursively convert all primitives in a data structure to strings.

stringifyOptionValue (value)
Convert option value from in-memory representation to a suitable string.

In particular, boolean values are converted to ‘0’ or ‘1°.

paradrop.lib.utils.uhttp module

class UHTTPConnection (path)
Bases: httplib.HTTPConnection

Subclass of Python library HTTPConnection that uses a unix-domain socket.

Source: http://7bits.nl/blog/posts/http-on-unix-sockets-with-python

180 Chapter 12. Source Code Reference

mailto:-@backupToken
http://7bits.nl/blog/posts/http-on-unix-sockets-with-python

paradrop Documentation, Release 0.13.2

connect ()

Module contents

Module contents

12.2 Submodules

12.3 paradrop.main module

Core module. Contains the entry point into Paradrop and establishes all other modules. Does not implement any
behavior itself.

class Nexus (update_fetcher, update_manager)
Bases: paradrop.base.nexus.NexusBase

onStart (**kwargs)
onStop ()

main ()

12.4 paradrop.plan_demo module

This module is here purely to help with understanding the rather complex execution plan in Paradrop. Simply run it
(python -m paradrop.plan_demo), and it will walk through all of the functions that make up a chute creation operation.

loadPriorityMap ()
Make a map of priority values back to their names for reference.

These are defined as constant integer values in paradrop.backend.exc.plangraph. For example, for priority 9
(STRUCT_GET_SYSTEM_DEVICES), the dictionary produced by this function would contain the entry 9:
“STRUCT_GET_SYSTEM_DEVICES”.

12.5 Module contents

12.2. Submodules 181

paradrop Documentation, Release 0.13.2

182 Chapter 12. Source Code Reference

cHAPTER 13

ParaDrop - Enabling Edge Computing at the Extreme Edge

ParaDrop is an open source edge computing platform developed by the WiNGS Lab at the University of Wisconsin-
Madison. We built the ParaDrop platform with WiFi routers, so that we can “paradrop” services from the cloud to the
extreme wireless edge - just one hop from user’s mobile devices, data sources, and actuators of IoT applications. The
name “ParaDrop” comes from the ability to “drop” supplies and resources (“services”) into the network edge.

SecCam Cloud EnvSense Cloud
Service ParaDrop Service
— @ N ParaDrop Controller ParaDrop /)
APl , APl @
S —— D
‘\ ‘~\\\\ *_/__/éw

~ \ ' ’ \\‘\
ParaDrop / . / // \‘\':-‘,\ SecCam EnvSense
I, .': '

Wi-Fi AP| “r=-.__ Chute Chute
S
! : (Z ;
SecCam ’k oy,
(— ”k B EnvSense

The above figure gives a high level overview of ParaDrop, including the ParaDrop platform and two example applica-
tions. With the ParaDrop API, third-party applications can deploy services into the network edge - the WiFi routers.
More information about the design and evolution of ParaDrop can be found in the paper.

183

https://wingslab.cs.wisc.edu/
http://pages.cs.wisc.edu/~suman/courses/707/papers/paradrop-sec2016.pdf

paradrop Documentation, Release 0.13.2

184 Chapter 13. ParaDrop - Enabling Edge Computing at the Extreme Edge

cHAPTER 14

Getting Started

Please visit the Quick Start page for a quick introduction about how to use ParaDrop.

185

paradrop Documentation, Release 0.13.2

186 Chapter 14. Getting Started

cHAPTER 15

Where to go from here?

We have document about ParaDrop application development found under Developing Applications. If you are inter-
ested in working on the development of the ParaDrop platform (our github code) then check out: How fo Contribute.

187

paradrop Documentation, Release 0.13.2

188 Chapter 15. Where to go from here?

HTTP Routing Table

/api

GET /api/vl/chutes/, 63

GET /api/vl/chutes/ (chute), 69

GET /api/vl/chutes/ (chute) /cache, 69

GET /api/vl/chutes/ (chute) /config, 68

GET /api/vl/chutes/ (chute) /networks, 67

GET /api/vl/chutes/ (chute) /networks/ (network),
67

GET /api/vl/chutes/ (chute) /networks/ (network) /hostapd_status,
64

GET /api/vl/chutes/ (chute) /networks/ (network) /leases,
66

GET /api/vl/chutes/ (chute)/networks/ (network) /ssid
66

GET /api/vl/chutes/ (chute) /networks/ (network)/stations,
65

GET /api/vl/chutes/ (chute) /networks/ (network)/stations/ (mac),
64

GET /api/vl/config/hostconfig, 70

GET /api/vl/config/new-config, 70

GET /api/vl/config/pdconft, 71

GET /api/vl/config/pdid, 71

GET /api/vl/config/provision,71

GET /api/vl/config/settings, 71

GET /api/vl/config/sshKeys/ (user), 72

GET /api/vl/info/environment, 72

GET /api/vl/info/features, 74

GET /api/vl/info/hardware, 73

GET /api/vl/info/software, 73

GET /api/vl/info/telemetry, 73

POST /api/vl/config/factoryReset, 69

POST /api/vl/config/provision,71

POST /api/vl/config/sshKeys/ (user), 72

PUT /api/vl/chutes/ (chute)/config, 68

PUT /api/vl/chutes/ (chute)/networks/ (network)/ssid
67

PUT /api/vl/config/hostconfig, 69

PUT /api/vl/config/pdconf, 71

189

paradrop Documentation, Release 0.13.2

190 HTTP Routing Table

Python Module Index

P

paradrop, 181

paradrop.
.airshark.airshark, 109
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
.backend.config_api, 120
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.

paradrop

paradrop

airshark, 111

airshark.analyzer, 109
airshark.scanner, 110
airshark.spectrum_reader, 110
backend, 128
backend.airshark_api, 111
backend.airshark_ws, 111
backend.auth, 112
backend.chute_api, 113

backend.cors, 123
backend.http_server, 123
backend.information_api, 124
backend.log_sockijs, 126
backend.password_api, 127
backend.password_manager, 127
backend.snapd_resource, 127
backend.status_sockjs, 128
base, 136

base.cxbr, 128
base.exceptions, 129
base.nexus, 130

output, 131
base.pdutils, 134
base.settings, 135

confd, 148

confd.base, 136
confd.client, 138
confd.command, 139
confd.dhcp, 139

confd. firewall, 140
confd.main, 142
confd.manager, 143
confd.network, 144
confd.qgos, 145
confd.wireless, 146

base.

paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.

163

core

core

core

core

core

core

core

core
core

paradrop.core.
paradrop.core.
paradrop.core.
paradrop.core.

167

paradrop.core.
paradrop.core.
paradrop.core.

core,
core.
core.
core.
core.
.chute, 154
core.
.chute.chute_storage, 153
core.
.config, 163
core.
core.
core.
core.
.config.
core.
.config.
core.
core.
core.
core.
.config.
core.
.config.
core.
.config.
.config.
core.
core.
core.
core.

174

agent, 151
agent.http, 148
agent.reporting, 150
agent .wamp_session, 151

chute.chute, 151
chute.restart, 154

airshark, 154
configservice, 155
devices, 155
dhcp, 157
dockerconfig, 158
firewall, 158
haproxy, 158
config.hostconfig, 158
config.network, 159
config.osconfig, 161
config.power, 161
reservations, 161
resource, 162
services, 162
snap, 162

state, 162
uciutils, 162
config.wifi, 163
config.zerotier, 163
container, 167
container.chutecontainer

config.
config.
config.
config.

config.

config.

config.

container.dockerapi, 164
container.dockerfile, 166
container.downloader, 166
container.log_provider,

plan, 170
plan.executionplan, 168
plan.hostconfig, 168

191

paradrop Documentation, Release 0.13.2

paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
paradrop.
.main

paradrop

paradrop.

core

core.

core

core.

core
core

core.
core.
core.
core.

core

core.
core.
.update.update_fetcher, 171
update.update_manager, 172
.update.update_object, 172

core

core.

core
lib,

lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.
lib.

.plan.
plan.
.plan.
plan.
.plan.
.plan.
plan.
plan.
plan.

syst

.system.system_info, 171
system.system_status, 171

upda

181

misc,
misc.
misc.
misc
misc.
misc.
utils
utils
utils
utils
utils
utils
utils
utils
, 181

name, 168
plangraph, 168
resource, 169
router, 169
runtime, 170
snap, 170
state, 170
struct, 170
traffic, 170
em, 171

te, 174

175

pdinstall, 174
procmon, 174

.resopt, 175

snapd, 175
ssh_keys, 175

, 181
.addresses, 176
.datastruct, 176
.pd_storage, 177
.pdos, 177
.pdosq, 178

.uci, 179
.uhttp, 180

plan_demo, 181

192

Python Module Index

Index

Symbols

—claim <claim>

pdtools-cloud-create-node command line option, 78

pdtools-routers-create command line option, 104
—force

pdtools-chute-add-wifi-ap command line option, 75
—interval <interval>

pdtools-store-watch-update-messages command line

option, 107

—legacy

pdtools-chute-initialize command line option, 77
—orphaned, —not-orphaned

pdtools-cloud-create-node command line option, 78

pdtools-routers-create command line option, 104
—password <password>

pdtools-chute-add-wifi-ap command line option, 75
—public, —not-public

pdtools-store-register command line option, 106
—server <server>

pdtools-device-provision command line option, 88
—user <user>

pdtools-device-sshkeys command line option, 89
—wamp <wamp>

pdtools-device-provision command line option, 88
—with-auth-cloud, —without-auth-cloud

pdtools-node command line option, 91
—with-auth-default, —without-auth-default

pdtools-node command line option, 91
—with-auth-environment, —without-auth-environment

pdtools-node command line option, 91
—with-auth-prompt, —without-auth-prompt

pdtools-node command line option, 91
—with-auth-saved, —without-auth-saved

pdtools-node command line option, 91
-c¢, —controller <controller>

pdtools-node-provision command line option, 99
-d, —directory <directory>

pdtools-node-install-chute command line option, 96

pdtools-node-update-chute command line option,

103
-f, —follow
pdtools-store-install-chute command line option,
105
-f, -format <format>
pdtools-chute-export-configuration command line

option, 76

pdtools-node-export-configuration command line
option, 95

pdtools-node-generate-configuration command line
option, 95

-n, —hame <name>
pdtools-cloud-claim-node command line option, 78
-s, —service <service>
pdtools-chute-enable-web-service command line op-
tion, 76
pdtools-node-open-chute-shell command line op-
tion, 99
-t, —target <target>
pdtools-node command line option, 91
-u, —user <user>
pdtools-node-import-ssh-key command line option,
96
pdtools-node-list-ssh-keys command line option, 98
-v, —version <version>
pdtools-store-install-chute command line option,
105
-w, —wamp <wamp>
pdtools-node-provision command line option, 99

A

abortCreate VolumeDirs() (in module
paradrop.core.config.dockerconfig), 158

abortNetworkConfig() (in module
paradrop.core.config.network), 159

abortPlans() (in module

paradrop.core.plan.executionplan), 168
add() (DeviceReservations method), 161
add() (InterfaceReservationSet method), 161
add() (SubnetReservationSet method), 161

193

paradrop Documentation, Release 0.13.2

add() (UCIBuilder method), 155
add_analyzer_observer() (AirsharkManager method), 109
add_message_observer() (UpdateObject method), 173
add_observer() (AirsharkInterfaceManager method), 154
add_provision_update() (UpdateManager method), 172
add_service() (Chute method), 152
add_spectrum_observer() (AirsharkManager method),
109
add_update() (UpdateManager method), 172
add_user() (PasswordManager method), 127
addAuthorizedKey() (in
paradrop.lib.misc.ssh_keys), 175
addConfig() (UCIConfig method), 179
addConfigs() (UCIConfig method), 179
addMap() (PlanMap method), 169
addPlans() (PlanMap method), 169
ADDRESS
pdtools-device command line option, 81
addToBridge() (ConfigInterface method), 144
aggregatePlans() (in
paradrop.core.plan.executionplan), 168
airshark_analyzer() (HttpServer method), 123
airshark_spectrum() (HttpServer method), 123
AirsharkAnalyzerFactory (class in
paradrop.backend.airshark_ws), 111
AirsharkAnalyzerProtocol (class in
paradrop.backend.airshark_ws), 111
AirsharkApi (class in paradrop.backend.airshark_api),
111
AirsharkInterfaceManager (class in
paradrop.core.config.airshark), 154
AirsharkManager (class in paradrop.airshark.airshark),
109
AirsharkSpectrumFactory (class in
paradrop.backend.airshark_ws), 111
AirsharkSpectrumProtocol (class in
paradrop.backend.airshark_ws), 112
allocate() (in module paradrop.lib.misc.resopt), 175
allowedActions (ProcessMonitor attribute), 174
AnalyzerProcessProtocol (class in
paradrop.airshark.analyzer), 109
annotate_routes() (in
paradrop.backend.http_server), 124
ANY_PROTO (ConfigRedirect attribute), 141
api_airshark() (HttpServer method), 123
api_audio() (HttpServer method), 123
api_auth() (HttpServer method), 123
api_changes() (HttpServer method), 123
api_chute() (HttpServer method), 123
api_configuration() (HttpServer method), 123
api_information() (HttpServer method), 123
api_network() (HttpServer method), 123
api_password() (HttpServer method), 123
app (HttpServer attribute), 123

module

module

module

append() (CommandList method), 139

apply() (ConfigClassify method), 145

apply() (ConfigDefaults method), 140

apply() (ConfigDnsmasq method), 140

apply() (ConfigForwarding method), 141
apply() (ConfigInterface method), 144, 145
apply() (ConfigObject method), 136

apply() (ConfigRedirect method), 141

apply() (ConfigRule method), 141

apply() (ConfigWifiDevice method), 146
apply() (ConfigWifilface method), 147

apply() (ConfigZone method), 142
assign_change_id() (UpdateManager method), 172
attach() (LogProvider method), 167
attrSaveable() (ChuteStorage method), 153
attrSaveable() (PDStorage method), 177
AttrWrapper (class in paradrop.base.nexus), 130
auth_cloud() (AuthApi method), 112

AuthApi (class in paradrop.backend.auth), 112
AuthenticationError, 129

B

backup() (UCIConfig method), 179
BaseClientFactory (class in paradrop.base.cxbr), 128
basename() (in module paradrop.lib.utils.pdos), 177
BaseOutput (class in paradrop.base.output), 131
BaseSession (class in paradrop.base.cxbr), 129
BaseSessionFactory (class in paradrop.base.cxbr), 129
blacklist (TwistedOutput attribute), 134
build() (paradrop.confd.base.ConfigObject class method),
136
build_host_config() (in
paradrop.core.container.dockerapi), 164
buildProtocol() (AirsharkAnalyzerFactory method), 111
buildProtocol() (AirsharkSpectrumFactory method), 111
buildProtocol() (LogSockJSFactory method), 126
buildProtocol() (StatusSockJSFactory method), 128

C

cache_get() (UpdateObject method), 173
cache_set() (UpdateObject method), 173
call() (BaseSession method), 129
call_in_netns() (in
paradrop.core.container.dockerapi), 164
call_retry() (in
paradrop.core.container.dockerapi), 164
change() (PasswordApi method), 127
CHANGE_ID
pdtools-device-watch command line option, 90
pdtools-node-watch-change-logs command line op-
tion, 103
change_password() (PasswordManager method), 127
change_stream() (HttpServer method), 123
changingSet() (ConfigManager method), 143

module

module

module

194

Index

paradrop Documentation, Release 0.13.2

CHANNEL_VOLUME

pdtools-device-audio-sink-volume command line
option, 82

pdtools-device-audio-source-volume command line
option, 83

check() (in module paradrop.base.pdutils), 134

check() (ProcessMonitor method), 174

check_auth() (in module paradrop.backend.auth), 112

check_image() (in module
paradrop.core.container.dockerapi), 164

check_log() (LogSockJSProtocol method), 127

check_spectrum() (AirsharkManager method), 109

checkPhyExists() (in module
paradrop.lib.utils.addresses), 176
checkSystemDevices() (in module

paradrop.core.config.devices), 156
childDataReceived() (AnalyzerProcessProtocol method),

109
chooseExternallntf() (in module
paradrop.core.config.network), 159
chooseSubnet() (in module

paradrop.core.config.network), 159
CHUTE
pdtools-device-chute command line option, 83
pdtools-node-describe-chute command line option,

92
pdtools-node-describe-chute-cache command line
option, 92
pdtools-node-describe-chute-configuration com-
mand line option, 93
pdtools-node-describe-chute-network-client ~ com-
mand line option, 93
pdtools-node-edit-chute-configuration command

line option, 94

pdtools-node-edit-chute-variables command line op-
tion, 94

pdtools-node-list-chute-network-clients
line option, 97

pdtools-node-list-chute-networks command line op-
tion, 97

pdtools-node-open-chute-shell command line op-
tion, 99

pdtools-node-remove-chute command line option,
100

pdtools-node-remove-chute-network-client
mand line option, 100

pdtools-node-restart-chute command line option,
100

pdtools-node-start-chute command line option, 102

pdtools-node-stop-chute command line option, 102

pdtools-node-watch-chute-logs command line op-
tion, 103

pdtools-store-install-chute command line option,
106

command

com-

Chute (class in paradrop.core.chute.chute), 151
chute_access_allowed() (in
paradrop.backend.chute_api), 120
chute_logs() (HttpServer method), 123
ChuteApi (class in paradrop.backend.chute_api), 113
ChuteCacheEncoder (class in
paradrop.backend.chute_api), 119
chuteConfigsMatch() (in module paradrop.lib.utils.uci),

module

180

ChuteContainer (class in
paradrop.core.container.chutecontainer),
163

ChuteEncoder (class in paradrop.backend.chute_api), 119

chuteList (ChuteStorage attribute), 153

ChuteNotFound, 129

ChuteNotRunning, 129

ChuteStorage (class in
paradrop.core.chute.chute_storage), 153

cleanup_net_interfaces() (in
paradrop.core.container.dockerapi), 164

clear() (PasswordApi method), 127

clear_update_list() (UpdateManager method), 172

clearChuteStorage() (ChuteStorage method), 153

CLIENT

module

pdtools-node-describe-chute-network-client com-
mand line option, 93
pdtools-node-remove-chute-network-client ~ com-

mand line option, 100
clientConnectionFailed() (BaseClientFactory method),
128
clientConnectionLost() (BaseClientFactory method), 128
cmd_chanscan() (Scanner method), 110
cmd_disable() (Scanner method), 110
cmd_set_samplecount() (Scanner method), 110
cmd_set_short_repeat() (Scanner method), 110
code_pattern (CurlRequestDriver attribute), 148
Command (class in paradrop.confd.command), 139
CommandList (class in paradrop.confd.command), 139
commands() (CommandList method), 139
complete() (UpdateObject method), 173
compute_hfsc_params() (in module paradrop.confd.qos),
146
computeResourceAllocation() (in
paradrop.core.config.resource), 162
ConfGenerator (class in paradrop.confd.wireless), 146
config_cors() (in module paradrop.backend.cors), 123
ConfigApi (class in paradrop.backend.config_api), 120
ConfigClass (class in paradrop.confd.qos), 145
ConfigClassgroup (class in paradrop.confd.qos), 145
ConfigClassify (class in paradrop.confd.qos), 145
ConfigDefaults (class in paradrop.confd.firewall), 140
ConfigDhcp (class in paradrop.confd.dhcp), 139
ConfigDnsmasq (class in paradrop.confd.dhcp), 140
ConfigDomain (class in paradrop.confd.dhcp), 140

module

Index

195

paradrop Documentation, Release 0.13.2

ConfigForwarding (class in paradrop.confd.firewall), 141
Configlnterface (class in paradrop.confd.network), 144
Configlnterface (class in paradrop.confd.qos), 145
ConfigManager (class in paradrop.confd.manager), 143
ConfigObject (class in paradrop.confd.base), 136
ConfigOption (class in paradrop.confd.base), 138
ConfigRedirect (class in paradrop.confd.firewall), 141
ConfigRule (class in paradrop.confd.firewall), 141
configure() (in module paradrop.core.config.airshark),
155
configure() (in module paradrop.core.config.zerotier),
163
configure_telemetry() (in
paradrop.core.config.services), 162
ConfigWifiDevice (class in paradrop.confd.wireless), 146
ConfigWifilface (class in paradrop.confd.wireless), 147
ConfigZone (class in paradrop.confd.firewall), 142
connect() (NexusBase method), 130
connect() (SnapdClient method), 175
connect() (UHTTPConnection method), 180
connectionLost() (JSONReceiver method), 149
connectionMade() (AnalyzerProcessProtocol method),
110
convertUnicode() (in module paradrop.base.pdutils), 134
copy() (ConfigObject method), 136
copy() (in module paradrop.lib.utils.pdos), 177
copytree() (in module paradrop.lib.utils.pdos), 177
count() (DeviceReservations method), 161
create_bridge() (in
paradrop.core.container.dockerapi), 164
create_chute() (ChuteApi method), 113
create_specification() (Chute method), 152
createDefaultInfo() (in module paradrop.base.nexus), 131
create VolumeDirs() (in module
paradrop.core.config.dockerconfig), 158
curl (CurlRequestDriver attribute), 148
CurlRequestDriver (class in paradrop.core.agent.http),
148

module

module

D

dataReceived() (JSONReceiver method), 149
debugfs_dir (Scanner attribute), 110

decode() (SpectrumReader static method), 110
default (ConfigOption attribute), 138

default() (ChuteCacheEncoder method), 119
default() (ChuteEncoder method), 119
default() (UpdateEncoder method), 120
delConfig() (UCIConfig method), 179
delConfigs() (UCIConfig method), 179
delete_chute() (ChuteApi method), 113

detectPrimarylnterface() (ConfigWifiDevice method),
146

detectSystemDevices() (in
paradrop.core.config.devices), 156

DEV_PLUS_VID (Configlnterface attribute), 144

dev_to_phy() (Scanner method), 110

DeviceNotFoundException, 129

DeviceReservations (class in
paradrop.core.config.reservations), 161

dict20bj (class in paradrop.base.pdutils), 134

do_snapd_request() (SnapdResource method), 127

Dockerfile (class in paradrop.core.container.dockerfile),
166

download() (Downloader method), 166

download() (GithubDownloader method), 166

download() (GitSSHDownloader method), 166

download() (WebDownloader method), 167

Downloader (class in paradrop.core.container.downloader),
166

downloader() (in module
paradrop.core.container.downloader), 167

dump() (ConfigObject method), 137

E

EMAIL
pdtools-device-snapd-createuser command line op-
tion, 89
pdtools-node-create-user command line option, 92
endLogging() (Output method), 132
ensure_unicode() (in module
paradrop.core.agent.wamp_session), 151
ensureReady() (ProcessMonitor method), 174
ERR (Level attribute), 132
ErrorCommand (class in paradrop.confd.command), 139
ESSID
pdtools-chute-add-wifi-ap command line option, 76
ExceptionOutput (class in paradrop.base.output), 132
execute() (Command method), 139
execute() (ConfigManager method), 143
execute() (ErrorCommand method), 139
execute() (FunctionCommand method), 139
execute() (KillCommand method), 139
execute() (UpdateObject method), 173
executePlans() (in
paradrop.core.plan.executionplan), 168
exists() (in module paradrop.lib.utils.pdos), 177
existsConfig() (UCIConfig method), 179
explode() (in module paradrop.base.pdutils), 134
exportAttr() (PDStorage method), 177
extract() (Downloader method), 166

module

module

delete_station() (ChuteApi method), 113 extract_tarred_chute() (in module
deleteChute() (ChuteStorage method), 153 paradrop.backend.chute_api), 120

detach() (LogProvider method), 167

196 Index

paradrop Documentation, Release 0.13.2

F

factory_reset() (ConfigApi method), 120

FATAL (Level attribute), 132

feedSpectrumData() (AnalyzerProcessProtocol method),
110

fetch() (Downloader method), 166

FILES (UCIBuilder attribute), 155

find_change() (UpdateManager method), 172

findByType() (ConfigObject method), 137

findConfigFiles() (in module paradrop.confd.manager),
144

findMatchingConfig() (ConfigManager method), 143

findMatchinglnterface() (in module
paradrop.core.config.firewall), 158

fixpath() (in module paradrop.lib.utils.pdos), 177

flush() (OutputRedirect method), 133

flush() (SpectrumReader method), 110

flushWirelessInterfaces() (in module
paradrop.core.config.devices), 156

formatOutput() (BaseOutput method), 131

freqlist (Scanner attribute), 110

fulfillDeviceRequest() (in module

paradrop.core.config.network), 159
FunctionCommand (class in paradrop.confd.command),
139

G

generate() (HostapdConfGenerator method), 148
generate() (WpaSupplicantConfGenerator method), 148

generate_service_plans() (in module
paradrop.core.plan.state), 170
generateConfigSections() (in module
paradrop.core.config.haproxy), 158
generateHostConfig() (in module
paradrop.core.config.hostconfig), 159
generatePlans() (in module
paradrop.core.plan.executionplan), 168
generatePlans() (in module

paradrop.core.plan.hostconfig), 168

generatePlans() (in module paradrop.core.plan.name),
168

generatePlans() (in module paradrop.core.plan.resource),
169

generatePlans() (in module paradrop.core.plan.router),
169

generatePlans() (in module paradrop.core.plan.runtime),
170

generatePlans() (in module paradrop.core.plan.snap), 170

generatePlans() (in module paradrop.core.plan.state), 170

generatePlans() (in module paradrop.core.plan.struct),
170

generatePlans() (in module paradrop.core.plan.traffic),
170

generateToken() (in module
paradrop.core.config.dockerconfig), 158

get() (PDServerRequest method), 149

getllacOptions() (HostapdConfGenerator method), 148

getl 1nOptions() (HostapdConfGenerator method), 148

getl1rOptions() (HostapdConfGenerator method), 148

get_access_level() (in module paradrop.backend.auth),

112

get_allowed_bearer() (in module paradrop.backend.auth),
112

get_auth_token() (in module

paradrop.core.config.zerotier), 163

get_change() (SnapdClient method), 175

get_chute() (ChuteApi method), 113

get_chute() (paradrop.core.chute.chute_storage.ChuteStorage
class method), 154

get_chute_cache() (ChuteApi method), 113

get_chute_config() (ChuteApi method), 113

get_chutes() (ChuteApi method), 114

get_cipher_list() (in module paradrop.confd.wireless),
148

get_class_id() (ConfigClassgroup method), 145

get_current_phy_conf() (in module
paradrop.core.config.network), 160

get_debugfs_dir() (Scanner method), 110

get_default_service() (Chute method), 152

get_environment() (Chute method), 152

get_environment() (InformationApi method), 124

get_features() (InformationApi method), 125

get_hardware_serial() (in
paradrop.core.config.devices), 156

get_hostapd_status() (ChuteApi method), 114

get_hostconfig() (ConfigApi method), 120

get_iptables() (ConfigDefaults method), 140

get_iptables() (ConfigRule method), 142

get_iptables() (ConfigZone method), 142

get_leases() (ChuteApi method), 115

get_logs() (LogProvider method), 167

get_machine_id() (in
paradrop.core.config.devices), 156

get_network() (ChuteApi method), 115

get_networks() (ChuteApi method), 116

get_networks() (in module paradrop.core.config.zerotier),
163

get_owner() (Chute method), 152

get_pdid() (ConfigApi method), 121

get_provision() (ConfigApi method), 121

get_service() (Chute method), 152

get_services() (Chute method), 153

get_settings() (ConfigApi method), 121

get_ssid() (ChuteApi method), 116

get_station() (ChuteApi method), 116

get_stations() (ChuteApi method), 117

module

module

Index

197

paradrop Documentation, Release 0.13.2

get_target_image() (in module
paradrop.core.container.dockerfile), 166
get_target_machine() (in
paradrop.core.container.dockerfile), 166
get_telemetry() (InformationApi method), 125
get_username_password() (in
paradrop.backend.auth), 112
get_web_port_and_service() (Chute method), 153
getAddress() (in module paradrop.core.config.zerotier),

module

module

163
getAttr() (ChuteStorage method), 153
getAuthorizedKeys() (in module
paradrop.lib.misc.ssh_keys), 175
getBridgeGateway() (in module

paradrop.core.container.dockerapi), 164
getBytesIO() (Dockerfile method), 166
getCache() (Chute method), 152
getCacheContents() (Chute method), 152
getChute() (ChuteStorage method), 153
getChuteConfigs() (UCIConfig method), 180
getChuteList() (ChuteStorage method), 154
getConfig() (UCIConfig method), 180
getConfiglgnoreComments() (UCIConfig method), 180
getConfiguration() (Chute method), 152

getDeveloperFirewallRules() (in module
paradrop.core.config.firewall), 158

getDeviceld() (SysReader method), 155

getDeviceReservations() (in module

paradrop.core.config.reservations), 161
getDMI() (in module paradrop.core.system.system_info),
171
getExtraOptions() (in
paradrop.core.config.network), 159
getFileType() (in module paradrop.lib.utils.pdos), 177
getGatewaylIntf() (in module
paradrop.lib.utils.addresses), 176
getHostConfig() (Chute method), 152
getHostConfig() (in
paradrop.core.config.hostconfig), 159
getID() (ChuteContainer method), 163
getlfname() (ConfigWifilface method), 147
getInterface Address() (in
paradrop.core.config.network), 159
getInterfaceReservations() (in
paradrop.core.config.reservations), 161
getInternalIntfList() (in
paradrop.lib.utils.addresses), 176
getIP() (ChuteContainer method), 163
getKey() (NexusBase method), 130
getL3BridgeConfig() (in
paradrop.core.config.network), 160
getLineParts() (in module paradrop.lib.utils.uci), 180

module

module

module

module

module

module

paradrop.core.config.devices), 156
getMainOptions() (HostapdConfGenerator method), 148
getMainOptions() (WpaSupplicantConfGenerator

method), 148
getModule() (paradrop.confd.base.ConfigObject

method), 137
getMountCmd() (in module paradrop.lib.utils.pdos), 177
getName() (ConfigDefaults method), 140
getName() (ConfigDomain method), 140
getName() (ConfigObject method), 137
getName() (ConfigWifilface method), 147

class

getNetworkConfig() (in module
paradrop.core.config.network), 160
getNetworkConfiglan() (in module
paradrop.core.config.network), 160
getNetworkConfigVlan() (in module
paradrop.core.config.network), 160
getNetworkConfigWifi() (in module

paradrop.core.config.network), 160

getNetworkInfo() (paradrop.core.system.system_status.SystemStatus

class method), 171
getNextAbort() (PlanMap method), 169
getNextTodo() (PlanMap method), 169

getOSFirewallRules() (in module
paradrop.core.config.firewall), 158

getOSNetworkConfig() (in module
paradrop.core.config.network), 160

getOS Version() (in module
paradrop.core.system.system_info), 171

getOSWirelessConfig() (in module
paradrop.core.config.wifi), 163

getPackageVersion() (in module

paradrop.core.system.system_info), 171
getPhyFromMAC() (in module paradrop.confd.wireless),

148
getPhyMACAddress() (in module
paradrop.confd.wireless), 148
getPhyMACAddress() (in module

paradrop.core.config.devices), 156
getPID() (ChuteContainer method), 163
getPid() (KillCommand method), 139
getPortConfiguration() (ChuteContainer method), 163
getPortList() (in module
paradrop.core.container.dockerapi), 164
getPreviousCommands() (ConfigManager method), 143

getProcessInfo() (paradrop.core.system.system_status.SystemStatus

class method), 171
getRadiusOptions() (HostapdConfGenerator method),

148
getRandomMAC() (ConfigWifilface method), 147
getReservations() (in module

paradrop.core.config.reservations), 162

getLogsSince() (Output method), 132 getResourceAllocation() (in module
getMACAddress() (in module paradrop.core.config.resource), 162
198 Index

paradrop Documentation, Release 0.13.2

getSections() (UCIBuilder method), 156
getSecurityOptions() (HostapdConfGenerator method),
148

hostapd_control() (ChuteApi method), 117
HostapdConfGenerator (class in
paradrop.confd.wireless), 147

getServerInfo() (paradrop.core.agent.http.PDServerRequest HTTPRequestDriver (class in paradrop.core.agent.http),

class method), 149

getSlotName() (SysReader method), 155

getStatus() (ChuteContainer method), 164

getStatus() (SystemStatus method), 171

getString() (Dockerfile method), 166

getSubnet() (in module paradrop.lib.utils.addresses), 176

getSubnetReservations() (in module
paradrop.core.config.reservations), 162

getSystemConfigDir() (in module paradrop.lib.utils.uci),
180

getSystemDevices() (in
paradrop.core.config.devices), 156

module

149
HTTPResponse (class in paradrop.core.agent.http), 149
HttpServer (class in paradrop.backend.http_server), 123

ID

pdtools-node-provision command line option, 99
importAttr() (PDStorage method), 177
incIpaddr() (in module paradrop.lib.utils.addresses), 176

getSystemInfo() (paradrop.core.system.system_status.Systeip§RgLevel attribute), 132

class method), 171
getSystemPath() (in module paradrop.lib.utils.uci), 180
getTypeAndName() (ConfigObject method), 137
getValue() (in module paradrop.lib.utils.datastruct), 176
getVendorld() (SysReader method), 155

getVirtDHCPSettings() (in module
paradrop.core.config.dhcp), 157
getVirtPreamble() (in module

paradrop.core.config.dockerconfig), 158
getWANIntf() (in module paradrop.lib.utils.addresses),
176
getWebPort() (Chute method), 152
getWifiKeySettings() (in
paradrop.core.config.network), 160
getWirelessPhyName() (in
paradrop.core.config.devices), 156
GithubDownloader (class in
paradrop.core.container.downloader), 166
GitSSHDownloader (class in
paradrop.core.container.downloader), 166

module

module

GROUP
pdtools-cloud-group-add-node command line op-
tion, 79
GROUP_ID
pdtools-group command line option, 90

H

handleMissingWiFi() (in

paradrop.core.config.devices), 156
handlePrint() (Output method), 133
hardware_info() (InformationApi method), 125
has_chute_build() (UpdateChute method), 172
has_chute_build() (UpdateObject method), 173
hdrsize (SpectrumReader attribute), 110
HEADER (Level attribute), 132

module

INCLUDED_PARTITIONS (SystemStatus attribute),
171

increaseDelay() (ReportSender method), 150

InformationApi (class in

paradrop.backend.information_api), 124

inherit_attributes() (Chute method), 153

initialDelay (BaseClientFactory attribute), 129

inspect() (ChuteContainer method), 164

installSnap() (SnapdClient method), 175

InteralException, 129

interface (Scanner attribute), 110

interface_available() (AirsharkInterfaceManager
method), 154

InterfaceReservationSet (class in
paradrop.core.config.reservations), 161

interpretBoolean() (in module paradrop.confd.base), 138

InvalidCredentials, 130

isdir() (in module paradrop.lib.utils.pdos), 177

isfile() (in module paradrop.lib.utils.pdos), 177

isHexString() (in module paradrop.confd.wireless), 148

isIpAvailable() (in module paradrop.lib.utils.addresses),
176

isIpValid() (in module paradrop.lib.utils.addresses), 176

isLeaf (SnapdResource attribute), 127

isMatch() (in module paradrop.lib.utils.uci), 180

isMatchIgnoreComments() (in
paradrop.lib.utils.uci), 180

isMount() (in module paradrop.lib.utils.pdos), 177

ismount() (in module paradrop.lib.utils.pdos), 177

isRunning() (AnalyzerProcessProtocol method), 110

isRunning() (Chute method), 153

isRunning() (ChuteContainer method), 164

isStaticIpAvailable() (in
paradrop.lib.utils.addresses), 176

isValid() (Chute method), 153

isValid() (Dockerfile method), 166

isVirtual() (in module paradrop.core.config.devices), 156

iSWAN() (in module paradrop.core.config.devices), 156

module

module

header_pattern (CurlRequestDriver attribute), 148 isWifiSSIDAvailable() (in module
home() (HttpServer method), 123 paradrop.lib.utils.addresses), 176
Index 199

paradrop Documentation, Release 0.13.2

isWireless() (in module paradrop.core.config.devices),
157

iterate_module_attributes() (in
paradrop.base.settings), 135

module

J

jsonPretty() (in module paradrop.base.pdutils), 135
JSONReceiver (class in paradrop.core.agent.http), 149

K

KEY

pdtools-node-provision command line option, 99
kill() (in module paradrop.confd.command), 139
KillCommand (class in paradrop.confd.command), 139

L

leave() (BaseSession method), 129

Level (class in paradrop.base.output), 132
listdir() (in module paradrop.lib.utils.pdos), 177
listen() (in module paradrop.confd.main), 142
listSnaps() (SnapdClient method), 175

listSystemDevices() (in module
paradrop.core.config.devices), 157
listWiFiDevices() (in module

paradrop.core.config.devices), 157
load() (in module paradrop.core.config.hostconfig), 159
load_from_file() (in module paradrop.base.settings), 135
loadConfig() (ConfigManager method), 143
loadFromDisk() (PDStorage method), 177
loadPriorityMap() (in module paradrop.plan_demo), 181
loadSettings() (in module paradrop.base.settings), 135
local_login() (AuthApi method), 112
lock (CurlRequestDriver attribute), 149

LogProvider (class in paradrop.core.container.log_provider)

167
logs() (HttpServer method), 123
LogSockJSFactory (class in
paradrop.backend.log_sockjs), 126
LogSockJSProtocol (class in

paradrop.backend.log_sockjs), 126
logToConsole() (Output method), 133
lookup() (ConfigObject method), 137

M

main() (in module paradrop.main), 181
make_iptables_cmd() (ConfigClassify method), 145
makedirs() (in module paradrop.lib.utils.pdosq), 178
makeHostapdConf() (ConfigWifilface method), 147
makeWpaSupplicantConf() (ConfigWifilface method),
147
manage_network() (in
paradrop.core.config.zerotier), 163
maskable (ConfigInterface attribute), 144

module

maskable (ConfigObject attribute), 137

maxDelay (BaseClientFactory attribute), 129

maxIpaddr() (in module paradrop.lib.utils.addresses), 176

messageToString() (Output method), 133

meta() (Downloader method), 166

meta() (GithubDownloader method), 167

meta() (GitSSHDownloader method), 166

meta() (WebDownloader method), 167

mkdir() (in module paradrop.lib.utils.pdos), 177

ModelNotFound, 130

MODULE

pdtools-node-load-audio-module command line op-

tion, 98

monitor_logs() (in module
paradrop.core.container.log_provider), 167

move() (in module paradrop.lib.utils.pdos), 177

N

NAME
pdtools-cloud-create-node command line option, 78
pdtools-cloud-delete-node command line option, 79
pdtools-cloud-describe-node command line option,
79
pdtools-cloud-edit-node-description command line
option, 79
pdtools-cloud-rename-node command line option,
81
pdtools-device-audio-load-module command line
option, 82
pdtools-routers-create command line option, 104
pdtools-store-describe-chute command line option,
105
pdtools-store-list-versions command line option, 106
name (ConfigOption attribute), 138

NETWORK

pdtools-device-chute-network command line option,
84

pdtools-node-describe-chute-network-client com-
mand line option, 93
pdtools-node-list-chute-network-clients command
line option, 97
pdtools-node-remove-chute-network-client ~ com-
mand line option, 100
new_config() (ConfigApi method), 121
NEW_NAME
pdtools-cloud-rename-node command line option,
81

nextld (ConfigObject attribute), 137
nextInterfaceName() (ConfigWifiDevice method), 146
Nexus (class in paradrop.main), 181
NexusBase (class in paradrop.base.nexus), 130
NODE
pdtools-cloud-group-add-node command line op-
tion, 79

200

Index

paradrop Documentation, Release 0.13.2

pdtools-store-install-chute command line option,

106
NODE_ID
pdtools-store-watch-update-messages command line
option, 107
NodeldentitySender (class in

paradrop.core.agent.reporting), 150

O

on_analyzer_message()
method), 111

on_analyzer_message() (AirsharkManager method), 109

on_interface_down() (AirsharkManager method), 109

on_interface_up() (AirsharkManager method), 109

on_spectrum_data() (AirsharkSpectrumProtocol
method), 112

onChallenge() (WampSession method), 151

onClose() (AirsharkAnalyzerProtocol method), 111

onClose() (AirsharkSpectrumProtocol method), 112

onClose() (LogSockJSProtocol method), 127

onClose() (StatusSockJSProtocol method), 128

onConnect() (WampSession method), 151

onDisconnect() (WampSession method), 151

onlnfoChange() (NexusBase method), 131

onJoin() (BaseSession method), 129

onJoin() (WampSession method), 151

onLeave() (WampSession method), 151

onMessage() (StatusSockJSProtocol method), 128

onOpen() (AirsharkAnalyzerProtocol method), 111

onOpen() (AirsharkSpectrumProtocol method), 112

onOpen() (LogSockJSProtocol method), 127

onOpen() (StatusSockJSProtocol method), 128

onStart() (Nexus method), 181

onStart() (NexusBase method), 131

onStop() (Nexus method), 181

onStop() (NexusBase method), 131

open() (in module paradrop.lib.utils.pdos), 177

OPTION

pdtools-device-hostconfig-change command line op-

tion, 87

options (ConfigClass attribute), 145

options (ConfigClassgroup attribute), 145

options (ConfigClassify attribute), 145

options (ConfigDefaults attribute), 140

options (ConfigDhcp attribute), 139

options (ConfigDnsmasq attribute), 140

options (ConfigDomain attribute), 140

options (ConfigForwarding attribute), 141

options (Configlnterface attribute), 144, 146

options (ConfigObject attribute), 137

options (ConfigRedirect attribute), 141

options (ConfigRule attribute), 142

options (ConfigWifiDevice attribute), 146

options (ConfigWifilface attribute), 147

(AirsharkAnalyzerProtocol

options (ConfigZone attribute), 142
optionsMatch() (ConfigObject method), 137
oscall() (in module paradrop.lib.utils.pdos), 178
Output (class in paradrop.base.output), 132
OutputRedirect (class in paradrop.base.output), 133

P

paradrop (module), 181

paradrop.airshark (module), 111
paradrop.airshark.airshark (module), 109
paradrop.airshark.analyzer (module), 109
paradrop.airshark.scanner (module), 110
paradrop.airshark.spectrum_reader (module), 110
paradrop.backend (module), 128
paradrop.backend.airshark_api (module), 111
paradrop.backend.airshark_ws (module), 111
paradrop.backend.auth (module), 112
paradrop.backend.chute_api (module), 63, 113
paradrop.backend.config_api (module), 69, 120
paradrop.backend.cors (module), 123
paradrop.backend.http_server (module), 123
paradrop.backend.information_api (module), 72, 124
paradrop.backend.log_sockjs (module), 126
paradrop.backend.password_api (module), 127
paradrop.backend.password_manager (module), 127
paradrop.backend.snapd_resource (module), 127
paradrop.backend.status_sockjs (module), 128
paradrop.base (module), 136

paradrop.base.cxbr (module), 128
paradrop.base.exceptions (module), 129
paradrop.base.nexus (module), 130
paradrop.base.output (module), 131
paradrop.base.pdutils (module), 134
paradrop.base.settings (module), 135
paradrop.confd (module), 148
paradrop.confd.base (module), 136
paradrop.confd.client (module), 138
paradrop.confd.command (module), 139
paradrop.confd.dhcp (module), 139
paradrop.confd.firewall (module), 140
paradrop.confd.main (module), 142
paradrop.confd.manager (module), 143
paradrop.confd.network (module), 144
paradrop.confd.qos (module), 145
paradrop.confd.wireless (module), 146
paradrop.core (module), 174
paradrop.core.agent (module), 151
paradrop.core.agent.http (module), 148
paradrop.core.agent.reporting (module), 150
paradrop.core.agent.wamp_session (module), 151
paradrop.core.chute (module), 154
paradrop.core.chute.chute (module), 151
paradrop.core.chute.chute_storage (module), 153
paradrop.core.chute.restart (module), 154

Index

201

paradrop Documentation, Release 0.13.2

paradrop.core.config (module), 163
paradrop.core.config.airshark (module), 154
paradrop.core.config.configservice (module), 155
paradrop.core.config.devices (module), 155
paradrop.core.config.dhcp (module), 157
paradrop.core.config.dockerconfig (module), 158
paradrop.core.config.firewall (module), 158
paradrop.core.config.haproxy (module), 158
paradrop.core.config.hostconfig (module), 158
paradrop.core.config.network (module), 159
paradrop.core.config.osconfig (module), 161
paradrop.core.config.power (module), 161
paradrop.core.config.reservations (module), 161
paradrop.core.config.resource (module), 162
paradrop.core.config.services (module), 162
paradrop.core.config.snap (module), 162
paradrop.core.config.state (module), 162
paradrop.core.config.uciutils (module), 162
paradrop.core.config.wifi (module), 163
paradrop.core.config.zerotier (module), 163
paradrop.core.container (module), 167
paradrop.core.container.chutecontainer (module), 163
paradrop.core.container.dockerapi (module), 164
paradrop.core.container.dockerfile (module), 166
paradrop.core.container.downloader (module), 166
paradrop.core.container.log_provider (module), 167
paradrop.core.plan (module), 170
paradrop.core.plan.executionplan (module), 168
paradrop.core.plan.hostconfig (module), 168
paradrop.core.plan.name (module), 168
paradrop.core.plan.plangraph (module), 168
paradrop.core.plan.resource (module), 169
paradrop.core.plan.router (module), 169
paradrop.core.plan.runtime (module), 170
paradrop.core.plan.snap (module), 170
paradrop.core.plan.state (module), 170
paradrop.core.plan.struct (module), 170
paradrop.core.plan.traffic (module), 170
paradrop.core.system (module), 171
paradrop.core.system.system_info (module), 171
paradrop.core.system.system_status (module), 171
paradrop.core.update (module), 174
paradrop.core.update.update_fetcher (module), 171
paradrop.core.update.update_manager (module), 172
paradrop.core.update.update_object (module), 172
paradrop.lib (module), 181

paradrop.lib.misc (module), 175
paradrop.lib.misc.pdinstall (module), 174
paradrop.lib.misc.procmon (module), 174
paradrop.lib.misc.resopt (module), 175
paradrop.lib.misc.snapd (module), 175
paradrop.lib.misc.ssh_keys (module), 175
paradrop.lib.utils (module), 181
paradrop.lib.utils.addresses (module), 176

paradrop.lib.utils.datastruct (module), 176
paradrop.lib.utils.pd_storage (module), 177
paradrop.lib.utils.pdos (module), 177
paradrop.lib.utils.pdosq (module), 178
paradrop.lib.utils.uci (module), 179
paradrop.lib.utils.uhttp (module), 180
paradrop.main (module), 181
paradrop.plan_demo (module), 181
paradrop_logs() (HttpServer method), 123
ParadropException, 130
parse() (in module paradrop.core.update.update_object),
174
parseLogPrefix() (in module paradrop.base.output), 134
parseValue() (in module paradrop.base.settings), 136
PasswordApi (class in paradrop.backend.password_api),
127
PasswordManager (class in
paradrop.backend.password_manager), 127
patch() (PDServerRequest method), 150
PATH
pdtools-chute-set command line option, 77
pdtools-cloud-import-ssh-key command line option,
80
pdtools-device-sshkeys-add command line option,
89
pdtools-node-import-configuration command line
option, 95
pdtools-node-import-ssh-key command line option,
96
pdtools-node-set-configuration command line op-
tion, 101
PCI_BUS_ID (SysReader attribute), 155
pdconf() (ConfigApi method), 122
pdconf_reload() (ConfigApi method), 122
PDID (NexusBase attribute), 130
PdidError, 130
PdidExclusionError, 130
PdServerException, 130
PDServerRequest (class in paradrop.core.agent.http), 149
PDServerResponse (class in paradrop.core.agent.http),
150
PDStorage (class in paradrop.lib.utils.pd_storage), 177
pdtools-chute-add-wifi-ap command line option
—force, 75
—password <password>, 75
ESSID, 76
pdtools-chute-enable-web-service command line option
-s, —service <service>, 76
PORT, 76
pdtools-chute-export-configuration command line option
-f, -format <format>, 76
pdtools-chute-initialize command line option
—legacy, 77
pdtools-chute-set command line option

202

Index

paradrop Documentation, Release 0.13.2

PATH, 77
VALUE, 77
pdtools-cloud-claim-node command line option
-n, —hame <name>, 78
TOKEN, 78
pdtools-cloud-create-node command line option
—claim <claim>, 78
—orphaned, —not-orphaned, 78
NAME, 78
pdtools-cloud-delete-node command line option
NAME, 79
pdtools-cloud-describe-node command line option
NAME, 79
pdtools-cloud-edit-node-description command line option
NAME, 79
pdtools-cloud-group-add-node command line option
GROUP, 79
NODE, 79
pdtools-cloud-import-ssh-key command line option
PATH, 80
pdtools-cloud-rename-node command line option
NAME, 81
NEW_NAME, 81
pdtools-device command line option
ADDRESS, 81
pdtools-device-audio-load-module command line option
NAME, 82
pdtools-device-audio-sink command line option
SINK_NAME, 82
pdtools-device-audio-sink-volume command line option
CHANNEL_VOLUME, 82
pdtools-device-audio-source command line option
SOURCE_NAME, 83
pdtools-device-audio-source-volume command line op-
tion
CHANNEL_VOLUME, 83
pdtools-device-chute command line option
CHUTE, 83
pdtools-device-chute-network command line option
NETWORK, 84
pdtools-device-chute-network-station command line op-
tion
STATION, 85
pdtools-device-hostconfig-change command line option
OPTION, 87
VALUE, 87
pdtools-device-provision command line option
—server <server>, 88
—wamp <wamp>, 88
ROUTER_ID, 88
ROUTER_PASSWORD, 88
pdtools-device-snapd-createuser command line option
EMAIL, 89
pdtools-device-sshkeys command line option

—user <user>, 89
pdtools-device-sshkeys-add command line option
PATH, 89
pdtools-device-watch command line option
CHANGE_ID, 90
pdtools-group command line option
GROUP_ID, 90
pdtools-group-add-router command line option
ROUTER_ID, 90
pdtools-node command line option
—with-auth-cloud, —without-auth-cloud, 91
—with-auth-default, —without-auth-default, 91
—with-auth-environment, —without-auth-
environment, 91
—with-auth-prompt, —without-auth-prompt, 91
—with-auth-saved, —without-auth-saved, 91
-t, —target <target>, 91
pdtools-node-create-user command line option
EMAIL, 92
pdtools-node-describe-chute command line option
CHUTE, 92
pdtools-node-describe-chute-cache command line option
CHUTE, 92
pdtools-node-describe-chute-configuration command line
option
CHUTE, 93
pdtools-node-describe-chute-network-client
line option
CHUTE, 93
CLIENT, 93
NETWORK, 93
pdtools-node-edit-chute-configuration command line op-
tion
CHUTE, %4
pdtools-node-edit-chute-variables command line option
CHUTE, %4
pdtools-node-export-configuration command line option
-f, -format <format>, 95
pdtools-node-generate-configuration command line op-
tion
-f, —format <format>, 95
pdtools-node-import-configuration command line option
PATH, 95
pdtools-node-import-ssh-key command line option
-u, —user <user>, 96
PATH, 96
pdtools-node-install-chute command line option
-d, —directory <directory>, 96
pdtools-node-list-chute-network-clients command line
option
CHUTE, 97
NETWORK, 97
pdtools-node-list-chute-networks command line option
CHUTE, 97

command

Index

203

paradrop Documentation, Release 0.13.2

pdtools-node-list-ssh-keys command line option
-u, —user <user>, 98
pdtools-node-load-audio-module command line option
MODULE, 98
pdtools-node-open-chute-shell command line option
-s, —service <service>, 99
CHUTE, 99
pdtools-node-provision command line option
-¢, —controller <controller>, 99
-w, —wamp <wamp>, 99
ID, 99
KEY, 99
pdtools-node-remove-chute command line option
CHUTE, 100
pdtools-node-remove-chute-network-client
line option
CHUTE, 100
CLIENT, 100
NETWORK, 100
pdtools-node-restart-chute command line option
CHUTE, 100
pdtools-node-set-configuration command line option
PATH, 101
VALUE, 101
pdtools-node-set-sink-volume command line option
SINK, 101
VOLUME, 101
pdtools-node-set-source-volume command line option
SOURCE, 101
VOLUME, 101
pdtools-node-start-chute command line option
CHUTE, 102
pdtools-node-stop-chute command line option
CHUTE, 102
pdtools-node-update-chute command line option
-d, —directory <directory>, 103
pdtools-node-watch-change-logs command line option
CHANGE_ID, 103
pdtools-node-watch-chute-logs command line option
CHUTE, 103
pdtools-routers-claim command line option
TOKEN, 104
pdtools-routers-create command line option
—claim <claim>, 104
—orphaned, —not-orphaned, 104
NAME, 104
pdtools-routers-delete command line option
ROUTER_ID, 104
pdtools-store-describe-chute command line option
NAME, 105
pdtools-store-install-chute command line option
-f, —follow, 105
-v, —version <version>, 105
CHUTE, 106

command

NODE, 106
pdtools-store-list-versions command line option
NAME, 106
pdtools-store-register command line option
—public, —not-public, 106
pdtools-store-watch-update-messages command line op-
tion
—interval <interval>, 107
NODE_ID, 107
UPDATE_ID, 107
PEREF (Level attribute), 132
permission_denied() (in
paradrop.backend.chute_api), 120
pktsize (SpectrumReader attribute), 110
Plan (class in paradrop.core.plan.plangraph), 168
PlanMap (class in paradrop.core.plan.plangraph), 168
pool (TwistedRequestDriver attribute), 150
PORT
pdtools-chute-enable-web-service command line op-
tion, 76
post() (PDServerRequest method), 150
prepare() (StateReportBuilder method), 151
prepare() (TelemetryReportBuilder method), 151
prepare_environment() (in
paradrop.core.container.dockerapi), 164
prepare_image() (in
paradrop.core.container.dockerapi), 165
prepare_port_bindings() (in
paradrop.core.container.dockerapi), 165
prepareHostConfig() (in
paradrop.core.config.hostconfig), 159
PrintLogThread (class in paradrop.base.output), 133
PRIO_CONFIG_IFACE (ConfigObject attribute), 136
PRIO_CONFIG_QDISC (ConfigObject attribute), 136
PRIO_CREATE_IFACE (ConfigObject attribute), 136
PRIO_CREATE_QDISC (ConfigObject attribute), 136
PRIO_CREATE_VLAN (ConfigObject attribute), 136
PRIO_IPTABLES_RULE (ConfigObject attribute), 136
PRIO_IPTABLES_TOP (ConfigObject attribute), 136
PRIO_IPTABLES_ZONE (ConfigObject attribute), 136
PRIO_START_DAEMON (ConfigObject attribute), 136
prioritizeConfigs() (ConfigObject static method), 137
process (Scanner attribute), 110
processEnded() (AnalyzerProcessProtocol method), 110
ProcessMonitor (class in paradrop.lib.misc.procmon),
174
progress() (UpdateObject method), 173
provision() (ConfigApi method), 122
provision() (NexusBase method), 131
provisioned() (NexusBase method), 131
publish() (BaseSession method), 129
pull_update() (UpdateFetcher method), 172
put() (PDServerRequest method), 150

module

module

module

module

module

204

Index

paradrop Documentation, Release 0.13.2

R

read_raw_samples() (AirsharkManager method), 109

read_samples() (SpectrumReader method), 110

read_sys_file() (in module paradrop.lib.utils.pdos), 178

read_uevent() (SysReader method), 155

read_yaml_file() (in module paradrop.lib.utils.pdosq),
178

readConfig() (ConfigManager method), 143

readConfig() (UCIConfig method), 180

readFile() (in module paradrop.lib.utils.pdos), 178

readHostconfigVlan() (in module
paradrop.core.config.devices), 157

readHostconfigWifi() (in module
paradrop.core.config.devices), 157

readHostconfigWifilnterfaces() (in module

paradrop.core.config.devices), 157
readMode() (HostapdConfGenerator method), 148
readSysFile() (in module paradrop.core.config.devices),
157
readTemplate() (Dockerfile method), 166
reboot() (in module paradrop.core.config.power), 161
receive() (CurlRequestDriver method), 149
receive() (TwistedRequestDriver method), 150
receiveHeaders() (CurlRequestDriver method), 149
receiveResponse() (PDServerRequest method), 150

reclaimNetworkResources() (in module
paradrop.core.config.network), 160
reconfigureProxy/() (in module

paradrop.core.config.haproxy), 158
refreshCpulLoad() (SystemStatus method), 171
refreshDiskInfo() (SystemStatus method), 171
refreshMemorylInfo() (SystemStatus method), 171
refreshNetworkTraffic() (SystemStatus method), 171
register() (BaseSession method), 129
registerSkip() (PlanMap method), 169
releaselnterfaceName() (ConfigWifiDevice method), 146
reload() (in module paradrop.confd.client), 138

remove_message_observer() (UpdateObject method),
173

remove_observer() (AirsharkInterfaceManager method),
154

remove_spectrum_observer() (AirsharkManager
method), 109

remove_user() (PasswordManager method), 127

removeAllChutes() (in module
paradrop.core.config.state), 162

removeAllContainers() (in module

paradrop.core.container.dockerapi), 165
removeFromBridge() (Configlnterface method), 144
removeFromParents() (ConfigObject method), 137
render() (SnapdResource method), 127
ReportSender (class in paradrop.core.agent.reporting),

150
request() (CurlRequestDriver method), 149
request() (HTTPRequestDriver method), 149
request() (PDServerRequest method), 150
request() (TwistedRequestDriver method), 150
required (ConfigOption attribute), 138
requiredFields (Dockerfile attribute), 166
requires_auth() (in module paradrop.backend.auth), 112
reset() (PasswordManager method), 127
reset_interface() (AirsharkInterfaceManager

154
resetToken() (paradrop.core.agent.http.PDServerRequest

class method), 150
resetWirelessDevice() (in

paradrop.core.config.devices), 157
resolvelnfo() (in module paradrop.base.nexus), 131

method),

module

resolveWirelessDevRef() (in module
paradrop.core.config.devices), 157

restart() (ProcessMonitor method), 174

restart_chute() (ChuteApi method), 118

restartChute() (in module

paradrop.core.container.dockerapi), 165

reload_placeholder() (in module restore() (UCICpnﬁg method), ISQ
paradrop.core.config.configservice), 155 restoreConfigFile() (.m. module

reloadAll() (in module paradrop.confd.client), 138 paradrop.core.config.uciutils), 162

reloadAll() (in module revert() (ConfigClassify method), 145
paradrop.core.config.configservice), 155 revert() (ConfigDefaults method), 140

reloadChutes() (in module paradrop.core.chute.restart), revert() (ConfigDnsmasq method), 140
154 revert() (ConfigForwarding method), 141

remove() (in module paradrop.lib.utils.pdos), 178 revert() (Conﬁglnte.zrface method), 144, 146

remove_analyzer_observer() (AirsharkManager method), revert() (ConfigObject method), 137
109 revert() (ConfigRedirect method), 141

remove_bridge() (in module revert() (ConfigRule method), 142
paradrop.core.container.dockerapi), 165 revert() (ConﬁgW%ﬁDewce method), 146

remove_container() (in module Tevert() (ConfigWifilface method), 147
paradrop.core.container.dockerapi), 165 revert() (ConfigZone method), 142

remove_image() (in module revert_dhcp_settings() (in module
paradrop.core.container.dockerapi), 165 paradrop.core.config.dhcp), 157

Index 205

paradrop Documentation, Release 0.13.2

revert_l3_bridge_config() (in module
paradrop.core.config.network), 160
revert_os_firewall_rules() (in module
paradrop.core.config.firewall), 158
revert_os_network_config() (in module
paradrop.core.config.network), 160
revert_os_wireless_config() (in module

paradrop.core.config.wifi), 163
revertChute() (in module paradrop.core.config.state), 162
revertConfig() (in module paradrop.core.config.osconfig),

161
revertHostConfig() (in module
paradrop.core.config.hostconfig), 159
revertResourceAllocation() (in module

paradrop.core.container.dockerapi), 165
ROUTER_ID
pdtools-device-provision command line option, 88
pdtools-group-add-router command line option, 90
pdtools-routers-delete command line option, 104
ROUTER_PASSWORD
pdtools-device-provision command line option, 88
routes (AirsharkApi attribute), 111
routes (AuthApi attribute), 112
routes (ChuteApi attribute), 118
routes (ConfigApi attribute), 122
routes (InformationApi attribute), 126
routes (PasswordApi attribute), 127
run() (PrintLogThread method), 134
run_thread() (in module paradrop.confd.main), 142

S

safe_remove() (in module paradrop.lib.utils.pdosq), 178

satisfies_requirements() (in module
paradrop.core.config.network), 160

save() (in module paradrop.core.config.hostconfig), 159

save() (NexusBase method), 131

save() (UCIConfig method), 180

saveChute() (ChuteStorage method), 154

saveChute() (in module paradrop.core.config.state), 162

saveKey() (NexusBase method), 131

saveToDisk() (PDStorage method), 177

sc_wide (SpectrumReader attribute), 110

Scanner (class in paradrop.airshark.scanner), 110

SECURITY (Level attribute), 132

select_brlan_address() (in module
paradrop.core.config.devices), 157
select_chute_subnet_pool() (in module

paradrop.core.config.network), 160

sem (TwistedRequestDriver attribute), 150

send() (NodeldentitySender method), 150

send() (ReportSender method), 150

sendCommand() (in module paradrop.lib.misc.pdinstall),
174

sendNodeldentity() (in module
paradrop.core.agent.reporting), 151

sendStateReport() (in module
paradrop.core.agent.reporting), 151

sendTelemetryReport() (in module

paradrop.core.agent.reporting), 151
ServiceNotFound, 130
set_chute_config() (ChuteApi method), 118
set_freqs() (Scanner method), 110
set_interface() (AirsharkInterfaceManager method), 155
set_ssid() (ChuteApi method), 118

set_update_fetcher() (paradrop.core.agent.wamp_session. WampSession

class method), 151
setAttr() (ChuteStorage method), 154
setCache() (Chute method), 153
setConfig() (in module paradrop.core.config.devices), 157
setConfig() (in module paradrop.core.config.uciutils), 162
setHeader() (HTTPRequestDriver method), 149
setHostConfig() (in
paradrop.core.config.hostconfig), 159
setL.3BridgeConfig() (in module
paradrop.core.config.network), 160
setOnChange() (AttrWrapper method), 130
setOSFirewallRules() (in
paradrop.core.config.firewall), 158
setOSNetworkConfig() (in
paradrop.core.config.network), 160
setOSWirelessConfig() (in module
paradrop.core.config.wifi), 163
setResourceAllocation() (in
paradrop.core.container.dockerapi), 165
setSystemDevices() (in
paradrop.core.config.devices), 157
setup() (ConfigClassgroup method), 145
setup() (Configinterface method), 144
setup() (ConfigObject method), 138
setup() (ConfigWifiDevice method), 146
setup() (ConfigZone method), 142
setup_http_server() (in
paradrop.backend.http_server), 124
setup_net_interfaces() (in
paradrop.core.container.dockerapi), 165
setVirtDHCPSettings() (in
paradrop.core.config.dhcp), 157
shutdown() (in module paradrop.core.config.power), 161
silentLogPrefix() (in module paradrop.base.output), 134
singleConfigMatches() (in module paradrop.lib.utils.uci),
180

module

module

module

module

module

module
module

module

SINK
pdtools-node-set-sink-volume command line option,
101
SINK_NAME
pdtools-device-audio-sink command line option, 82
snapd() (HttpServer method), 123

206

Index

paradrop Documentation, Release 0.13.2

SnapdClient (class in paradrop.lib.misc.snapd), 175
SnapdResource (class in
paradrop.backend.snapd_resource), 127
software_info() (InformationApi method), 126
sort() (PlanMap method), 169
SOURCE
pdtools-node-set-source-volume command line op-
tion, 101
SOURCE_NAME
pdtools-device-audio-source command line option,

83
spectrum_reader (Scanner attribute), 110
SpectrumReader (class in

paradrop.airshark.spectrum_reader), 110
split_interface_type() (in module
paradrop.core.config.network), 160
sshKeys() (ConfigApi method), 122
start() (paradrop.base.cxbr.BaseSession class method),
129
start() (Scanner method), 110
start_chute() (ChuteApi method), 119
start_container() (in
paradrop.core.container.dockerapi), 165
start_iptables_command() (in
paradrop.confd.firewall), 142
start_long_poll() (UpdateFetcher method), 172
start_polling() (UpdateFetcher method), 172
start_update() (ConfigApi method), 122
started() (UpdateObject method), 173
startLogging() (Output method), 133
STATE_DISABLED (Chute attribute), 152
STATE_FROZEN (Chute attribute), 152
STATE_INVALID (Chute attribute), 152
STATE_RUNNING (Chute attribute), 152
STATE_STOPPED (Chute attribute), 152
StateReport (class in paradrop.core.agent.reporting), 150

module

module

StateReportBuilder (class in
paradrop.core.agent.reporting), 150
STATION
pdtools-device-chute-network-station command line
option, 85

status() (AirsharkApi method), 111
status() (AirsharkManager method), 109
status() (HttpServer method), 123

StatusSockJSFactory (class in
paradrop.backend.status_sockjs), 128
StatusSockJSProtocol (class in

paradrop.backend.status_sockjs), 128
statusString() (ConfigManager method), 143
stealStdio() (Output method), 133
stimestr() (in module paradrop.base.pdutils), 135
stockCall() (BaseSession method), 129
stockPublish() (BaseSession method), 129
stockRegister() (BaseSession method), 129

stockSubscribe() (BaseSession method), 129

stop() (AnalyzerProcessProtocol method), 110

stop() (Scanner method), 110

stop_chute() (ChuteApi method), 119

stopChute() (in
paradrop.core.container.dockerapi), 165

stringify() (in module paradrop.lib.utils.uci), 180

stringifyOptionValue() (in module paradrop.lib.utils.uci),
180

SubnetReservationSet (class in
paradrop.core.config.reservations), 161

subscribe() (BaseSession method), 129

success() (Command method), 139

success() (ErrorCommand method), 139

symlink() (in module paradrop.lib.utils.pdos), 178

SysReader (class in paradrop.core.config.devices), 155

SystemStatus (class in
paradrop.core.system.system_status), 171

systemStatus() (in module paradrop.confd.client), 138

T

tarfile_is_safe() (in module paradrop.backend.chute_api),
120

TelemetryReportBuilder (class in
paradrop.core.agent.reporting), 151

timedur() (in module paradrop.base.pdutils), 135

timeflt() (in module paradrop.base.pdutils), 135

timeint() (in module paradrop.base.pdutils), 135

Timer (class in paradrop.base.pdutils), 134

timestr() (in module paradrop.base.pdutils), 135

toJSON() (StateReport method), 150

TOKEN

pdtools-cloud-claim-node command line option, 78
pdtools-routers-claim command line option, 104

token (PDServerRequest attribute), 150

trueWrite() (OutputRedirect method), 133

TwistedException (class in paradrop.base.output), 134

TwistedOutput (class in paradrop.base.output), 134

TwistedRequestDriver (class in paradrop.core.agent.http),
150

type (ConfigOption attribute), 138

typename (ConfigClass attribute), 145

typename (ConfigClassgroup attribute), 145

typename (ConfigClassify attribute), 145

typename (ConfigDefaults attribute), 141

typename (ConfigDhcp attribute), 140

typename (ConfigDnsmasq attribute), 140

typename (ConfigDomain attribute), 140

typename (ConfigForwarding attribute), 141

typename (Configlnterface attribute), 144, 146

typename (ConfigObject attribute), 138

typename (ConfigRedirect attribute), 141

typename (ConfigRule attribute), 142

typename (ConfigWifiDevice attribute), 147

module

Index

207

paradrop Documentation, Release 0.13.2

typename (ConfigWifilface attribute), 147
typename (ConfigZone attribute), 142

U

UCIBuilder (class in paradrop.core.config.devices), 155
UCIConfig (class in paradrop.lib.utils.uci), 179
UHTTPConnection (class in paradrop.lib.utils.uhttp), 180
unlink() (in module paradrop.lib.utils.pdos), 178
unload() (ConfigManager method), 144
update() (WampSession method), 151
update_chute() (ChuteApi method), 119
update_fetcher (WampSession attribute), 151
update_hostconfig() (ConfigApi method), 122
UPDATE_ID

pdtools-store-watch-update-messages command line

option, 107
updateApply() (ConfigDefaults method), 141
updateApply() (ConfigInterface method), 144
update Apply() (ConfigObject method), 138
updateApply() (ConfigWifilface method), 147
updateCache() (Chute method), 153
UpdateChute (class
paradrop.core.update.update_object), 172

UpdateEncoder (class in paradrop.backend.chute_api),

in

119
UpdateFetcher (class in
paradrop.core.update.update_fetcher), 171
UpdateManager (class in

paradrop.core.update.update_manager), 172
updateModuleList (UpdateChute attribute), 172
updateModuleList (UpdateObject attribute), 173
updateModuleList (UpdateRouter attribute), 173
updateModuleList (UpdateSnap attribute), 173
UpdateObject (class

paradrop.core.update.update_object), 172
updatePaths() (in module paradrop.base.settings), 136
updateRevert() (ConfigDefaults method), 141
updateRevert() (Configlnterface method), 144
updateRevert() (ConfigObject method), 138
updateRevert() (ConfigWifilface method), 147
UpdateRouter (class

paradrop.core.update.update_object), 173
UpdateSnap (class in paradrop.core.update.update_object),

173
updateSnap() (in module paradrop.core.config.snap), 162
updateSnap() (SnapdClient method), 175
updatesPending() (WampSession method), 151
updateStatus() (in module paradrop.core.chute.restart),

154
urlDecodeMe() (in module paradrop.base.pdutils), 135
urlEncodeMe() (in module paradrop.base.pdutils), 135
urlEncodeParams() (in module paradrop.core.agent.http),

150
USAGE (Level attribute), 132

in

in

USB_BUS_ID (SysReader attribute), 155

\Y

validate_change() (in module paradrop.core.plan.state),
170
validateInfo() (in module paradrop.base.nexus), 131
VALUE
pdtools-chute-set command line option, 77
pdtools-device-hostconfig-change command line op-
tion, 87
pdtools-node-set-configuration command line op-
tion, 101
VERBOSE (Level attribute), 132
verify_cloud_token() (in module paradrop.backend.auth),
112
verify_password() (in module paradrop.backend.auth),
112
verify_password() (PasswordManager method), 127
VERSION (NexusBase attribute), 130
VOLUME
pdtools-node-set-sink-volume command line option,
101
pdtools-node-set-source-volume command line op-
tion, 101

W

wait_for_zerotier() (in
paradrop.core.config.zerotier), 163

waitSystemUp() (ConfigManager method), 144

waitSystemUp() (in module paradrop.confd.client), 138

WampSession (class in
paradrop.core.agent.wamp_session), 151

WARN (Level attribute), 132

WebDownloader (class
paradrop.core.container.downloader), 167

WpaSupplicantConfGenerator (class
paradrop.confd.wireless), 148

write() (in module paradrop.lib.utils.pdos), 178

write() (OutputRedirect method), 133

write() (UCIBuilder method), 156

module

in

writeAuthorizedKeys() (in module
paradrop.lib.misc.ssh_keys), 175

writeConfigFile() (in module
paradrop.core.config.haproxy), 158

writeDockerConfig() (in module

paradrop.core.container.dockerapi), 165
writeFile() (Dockerfile method), 166
writeFile() (in module paradrop.lib.utils.pdos), 178
writeHeader() (ConfGenerator method), 146
writeHeader() (HostapdConfGenerator method), 148
writeHeader() (WpaSupplicantConfGenerator method),
148
writeOptions() (ConfGenerator method), 146
writeYaml() (in module paradrop.base.nexus), 131

208

Index

	Cloud computing vs. edge computing
	Where is the vantage point for edge computing?
	How does it work?
	System Architecture
	ParaDrop Edge Compute Node
	ParaDrop Cloud Controller
	ParaDrop Hardware
	ParaDrop API

	Hardware Support
	Virtual Machine
	Intel NUC
	PC Engines APU2
	Raspberry Pi 2

	Quick Start
	Create a ParaDrop Account
	Boot the ParaDrop Node
	Activate a ParaDrop Node
	Install a hello-world Chute

	Developing Applications
	Introduction
	Developing Light Chutes
	Getting Started with C
	Getting Started with Go
	Getting Started with Java
	Getting Started with Node.js
	Getting Started with Python
	Tutorial: Sticky Board

	Frequently Asked Questions
	Issues with the hardware or operating system

	How to Contribute
	ParaDrop daemon development
	Documentation and tests

	Host API Reference
	Host Configuration
	Chute Configuration
	Chute Management
	Device Configuration
	Device Information

	pdtools CLI Reference
	pdtools

	Source Code Reference
	Subpackages
	Submodules
	paradrop.main module
	paradrop.plan_demo module
	Module contents

	ParaDrop - Enabling Edge Computing at the Extreme Edge
	Getting Started
	Where to go from here?
	HTTP Routing Table
	Python Module Index
	Index

